1、3.2 古典概型,3.2.1 古典概型,问题提出,1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?,若事件A发生时事件B一定发生,则 .若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.,2.概率的加法公式是什么?对立事件的概率有什么关系?,若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).,若事件A与事件B相互对立,则 P(A)+P(B)=1.,3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多
2、,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.,古典概型,思考1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?,(正,正),(正,反), (反,正),(反,反);,(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).,知识探究(一):基本事件,思考2:上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?,互斥关系,思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机
3、事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?,思考4:综上分析,基本事件有哪两个特征?,(1)任何两个基本事件是互斥的;,(2)任何事件(除不可能事件)都可以表示成基本事件的和.,思考5:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?,A=a,b,B=a,c,C=a,d,D=b,c,E=b,d,F=c,d;,A+B+C.,知识探究(二):古典概型,思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?,思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗
4、?,思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?,无数个,思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型. 在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?,不是,因为命中的环数的可能性不相等.,思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?,P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”),P(“1点”)+P(“2点”)+
5、P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.,思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?,思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?,思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?,P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数基本事件的总数;,P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数基本事件的
6、总数.,思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?,P(A)=事件A所包含的基本事件的个数基本事件的总数.,思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率 P(A)等于什么?特别地,当A=U,A=时,P(A)等于什么?,理论迁移,例1 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?,0.25,例2 同时掷两个骰子,计算:(1)一共
7、有多少种不同的结果?(2)其中向上的点数之和是7的结果有多少种?(3)向上的点数之和是5的概率是多少?,36;6;1/6.,例3 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?,0.00001,例4 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.,830+830+230=0.6,小结作业,1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.,2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数基本事件的总数,只对古典概型适用,3.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数基本事件的总数,只对古典概型适用,作业:P133134习题3.2 A组 : 1,2,3,4.,