ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:766KB ,
资源ID:1234683      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1234683.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(6 非线性规划模型7213482.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

6 非线性规划模型7213482.ppt

1、第6章 非线性规划模型,6.1 存贮模型6.2 生猪的出售时机6.3 森林救火,现实世界中普遍存在着优化问题,静态优化问题指最优解是数(不是函数),建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数,求解静态优化模型一般用微分法,静 态 优 化 模 型,6.1 存贮模型,问 题,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。该厂生产能力非常大,即所需数量可在很短时间内产出。,已知某产品日需求量100件,生产准备费5000元,贮存费每日每件1元。试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。,要求,不只是回

2、答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。,问题分析与思考,每天生产一次,每次100件,无贮存费,准备费5000元。,日需求100件,准备费5000元,贮存费每日每件1元。,10天生产一次,每次1000件,贮存费900+800+100 =4500元,准备费5000元,总计9500元。,50天生产一次,每次5000件,贮存费4900+4800+100 =122500元,准备费5000元,总计127500元。,平均每天费用950元,平均每天费用2550元,10天生产一次平均每天费用最小吗?,每天费用5000元,这是一个优化问题,关键在建立目标函数。,显然不能用一个周期的总

3、费用作为目标函数,目标函数每天总费用的平均值,周期短,产量小,周期长,产量大,问题分析与思考,模 型 假 设,1. 产品每天的需求量为常数 r;,2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2;,3. T天生产一次(周期), 每次生产Q件,当贮存量 为零时,Q件产品立即到来(生产时间不计);,建 模 目 的,设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小。,4. 为方便起见,时间和产量都作为连续量处理。,模 型 建 立,贮存量表示为时间的函数 q(t),t=0生产Q件,q(0)=Q, q(t)以需求速率r递减,q(T)=0.,一周期总费用,每天总费用平均值(目标

4、函数),离散问题连续化,一周期贮存费为,A=QT/2,模型求解,求 T 使,模型分析,模型应用,c1=5000, c2=1,r=100,回答问题,经济批量订货公式(EOQ公式),每天需求量 r,每次订货费 c1,每天每件贮存费 c2 ,,用于订货、供应、存贮情形,不允许缺货的存贮模型,问:为什么不考虑生产费用?在什么条件下才不考虑?,T天订货一次(周期), 每次订货Q件,当贮存量降到零时,Q件立即到货。,允许缺货的存贮模型,A,B,当贮存量降到零时仍有需求r, 出现缺货,造成损失,原模型假设:贮存量降到零时Q件立即生产出来(或立即到货),现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需

5、补足,一周期贮存费,一周期缺货费,周期T, t=T1贮存量降到零,一周期总费用,每天总费用平均值(目标函数),一周期总费用,求 T ,Q 使,为与不允许缺货的存贮模型相比,T记作T , Q记作Q,不允许缺货模型,记,允许缺货模型,允许缺货模型,注意:缺货需补足,Q每周期初的存贮量,每周期的生产量R (或订货量),Q不允许缺货时的产量(或订货量),6.2 生猪的出售时机,饲养场每天投入4元资金,用于饲料、人力、设备,估计可使80千克重的生猪体重增加2公斤。,问题,市场价格目前为每千克8元,但是预测每天会降低 0.1元,问生猪应何时出售。,如果估计和预测有误差,对结果有何影响。,分析,投入资金使生

6、猪体重随时间增加,出售单价随时间减少,故存在最佳出售时机,使利润最大,求 t 使Q(t)最大,10天后出售,可多得利润20元,建模及求解,生猪体重 w=80+rt,出售价格 p=8-gt,销售收入 R=pw,资金投入 C=4t,利润 Q=R-C=pw -C,估计r=2,,若当前出售,利润为808=640(元),t 天出售,=10,Q(10)=660 640,g=0.1,敏感性分析,研究 r, g变化时对模型结果的影响,设g=0.1不变,t 对r 的(相对)敏感度,生猪每天体重增加量r 增加1%,出售时间推迟3%。,敏感性分析,研究 r, g变化时对模型结果的影响,设r=2不变,t 对g的(相对

7、)敏感度,生猪价格每天的降低量g增加1%,出售时间提前3%。,强健性分析,保留生猪直到利润的增值等于每天的费用时出售,由 S(t,r)=3,建议过一周后(t=7)重新估计 , 再作计算。,研究 r, g不是常数时对模型结果的影响,w=80+rt w = w(t),p=8-gt p =p(t),若 (10%), 则 (30%),6.3 森林救火,森林失火后,要确定派出消防队员的数量。队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。综合考虑损失费和救援费,确定队员数量。,问题分析,问题,记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t)

8、.,损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.,救援费f2(x)是x的增函数, 由队员人数和救火时间决定.,存在恰当的x,使f1(x), f2(x)之和最小,关键是对B(t)作出合理的简化假设.,问题分析,失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形,分析B(t)比较困难,转而讨论森林烧毁速度dB/dt.,模型假设,3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费),1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度),2)t1tt2, 降为-x (为队员的平均灭火速度),4)每个队员的单位时间灭火费用c2, 一次性费用c3,假设1)的解释,火势以失火点为中心,均匀向四周呈圆形蔓延,半径 r与 t 成正比,模型建立,目标函数总费用,模型建立,目标函数总费用,模型求解,求 x使 C(x)最小,结果解释, / 是火势不继续蔓延的最少队员数,其中 c1,c2,c3, t1, ,为已知参数,模型应用,c1,c2,c3已知, t1可估计,c2 x,c1, t1, x,c3 , x ,结果解释,c1烧毁单位面积损失费, c2每个队员单位时间灭火费, c3每个队员一次性费用, t1开始救火时刻, 火势蔓延速度, 每个队员平均灭火速度.,为什么?, ,可设置一系列数值,由模型决定队员数量x,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报