ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:87.66KB ,
资源ID:11688468      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11688468.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版数学六年级下册第5单元数学广角--鸽巢问题.docx)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

人教版数学六年级下册第5单元数学广角--鸽巢问题.docx

1、第 5 单元数学广角鸽巢问题第 1 课时鸽巢问题( 1)【教学目标】1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、过程与方法: 经历探究 “鸽巢原理” 的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。【教学重难点】重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。【教学过程】一、 情境导入教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很

2、深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。 ( 板书课题:鸽巢问题 )教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为: “鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题” 能解决哪些问题?怎样运用 “鸽巢问题”解决问题?二、探究新知:1. 教学例 1.( 课件出示例题 1 情境图)思考问题:把 4 支铅笔放进 3 个笔筒中,不管怎么放,总有 1 个笔筒里至少有 2 支铅笔。为什么呢?“总有”和“至少”

3、是什么意思?学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。(1) 操作发现规律:通过把 4 支铅笔放进 3 个笔筒中,可以发现:不管怎么放,总有 1 个笔筒里至少有 2 支铅笔。(2) 理解关键词的含义: “总有”和“至少”是指把 4 支铅笔放进 3 个笔筒中,不管怎么放,一定有 1 个笔筒里的铅笔数大于或等于 2 支。(3) 探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把 4 分解成 3 个数。由图可知,把 4 分解成 3 个数,与枚举法相似,也有4 中情况,每一种情况分得的3 个数中,至少有1 个数是不小于 2 的数。方法三:用“假设法

4、”证明。通过以上几种方法证明都可以发现:把4 只铅笔放进3 个笔筒中,无论怎么放,总有1 个笔筒里至少放进2 只铅笔。( 4)认识“鸽巢问题”像上面的问题就是“鸽巢问题” ,也叫“抽屉问题”。在这里, 4 支铅笔是要分放的物体,就相当于 4 只“鸽子”,“3 个笔筒”就相当于 3 个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把 4 只鸽子放进 3 个笼子,总有 1 个笼子里至少有 2 只鸽子。 里的“ 有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的 子最多的那个“ 子”里 子“最少”的个数。小 :只要放的 笔数比笔筒的数量多,就 有1 个笔筒里

5、至少放 2 支 笔。如果放的 笔数比笔筒的数量多2,那么 有 1 个笔筒至少放 2 支 笔;如果放的 笔比笔筒的数量多3,那么 有 1 个笔筒里至少放2 只 笔小 :只要放的 笔数比笔筒的数量多,就 有1 个笔筒里至少放 2 支 笔。(5) : 巢原理(一):如果把 m个物体任意放 n 个抽 里( mn,且 n 是非零自然数),那么一定有一个抽 里至少放 了 2 个物体。2 、教学例 2( 件出示例 2 情境 )思考 :(一)把 7 本 放 3 个抽 ,不管怎么放, 有 1 个抽 里至少有 3 本 。 什么呢?(二)如果有 8 本 会怎 呢? 10 本 呢?学生通 “探究 明得出 ”的学 程来

6、解决 (一)。( 1)探究 明。方法一:用数的分解法 明。把 7 分解成 3 个数的和。把 7 本 放 3 个抽 里,共有如下 8 种情况:由 可知,每种情况分得的 3 个数中,至少有 1 个数不小于 3,也就是每种分法中最多那个数最小是 3,即 有 1 个抽 至少放 3 本 。方法二:用假 法 明。把 7 本 平均分成 3 份,7 3=2(本).1(本),若每个抽 放 2 本, 剩 1 本。如果把剩下的 1本书放进任意 1 个抽屉中,那么这个抽屉里就有 3 本书。(2)得出结论。通过以上两种方法都可以发现: 7 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 3 本书。学生通

7、过“假设分析法归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。83=2(本) .2(本),剩下 2 本,分别放进其中 2 个抽屉中,使其中 2 个抽屉都变成 3 本,因此把 8 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 3 本书。103=3(本) .1(本),把 10 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 4 本书。(2)归纳总结:综合上面两种情况,要把 a 本书放进 3 个抽屉里,如果 a 3=b(本) .1 (本)或 a3=b(本) .2(本),那么一定有 1 个抽屉里至少放进( b+1)本书。鸽巢原理(二):我们把多余 kn 个的物体任意分别放进 n 个空抽屉( k 是正整数, n 是非 0 的自然数),那么一定有一个抽屉中至少放进了( k+1) 个物体。三、巩固练习1、完成教材第69 页的“做一做”第1、2 题。学生独立思考解答问题,集体交流、纠正。2、完成教材第 71 页练习十三的 1-2 题。学生独立思考解答问题,集体交流、纠正。四、课堂总结今天这节课你有什么收获?能说给大家听听吗?

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报