ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:445.01KB ,
资源ID:11660900      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11660900.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(运用均值不等式的八类配凑方法.doc)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

运用均值不等式的八类配凑方法.doc

1、运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。例已知,求函数的最大值。解: 。当且仅当,即时,上式取“=”。故。评注:通过因式分解,将函数解

2、析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。例2 求函数的最大值。解:。因,当且仅当,即时,上式取“=”。故。评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。例3 已知,求函数的最大值。解:。当且仅当,即时,上式取“=”。故,又。二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设,求函数的最小值。解:。当且仅当时,上式取“=”。故。评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑

3、定积”,往往是十分方便的。例5 已知,求函数的最大值。解:,。当且仅当时,上式取“=”。故。评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定积”。例6 已知,求函数的最小值。解:因为,所以,令,则。所以。当且仅当,即时,上式取“=”。故。评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。三、 拼凑常数降幂例7 若,求证:。分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。本题已知与要求证的条件是,为解题提供了信息,发现

4、应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。证明:。当且仅当时,上述各式取“=”,故原不等式得证。评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。例8 若,求的最大值。解:。当且仅当时,上述各式取“=”,故的最大值为7。例9 已知,求证:。证明:,又,。当且仅当时,上述各式取“=”,故原不等式得证。四、 拼凑常数升幂例10 若,且,求证。分析:已知与要求证的不等式都是关于的轮换对称式,容易发现等号成立的条件是,故应拼凑,巧妙升次,迅速促成“等”与“不等”的辩证转化。证明:,。当且仅当时,上述各式取“=”,故原不等式得证。例11 若,求证:。证明:。又。当且仅当时,上述

5、各式取“=”,故原不等式得证。五、 约分配凑通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。例12 已知,求的最小值。 解:。当且仅当时,即,上式取“=”,故。例13 已知,求函数的最小值。解:因为,所以。所以。当且仅当时,即,上式取“=”,故。例14 若,求证。分析:注意结构特征:要求证的不等式是关于的轮换对称式,当时,等式成立。此时,设,解得,所以应拼凑辅助式为拼凑的需要而添,经此一添,解题可见眉目。证明:。当且仅当时,上述各式取“=”,故原不等式得证。六、 引入参数拼凑 某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。例1

6、5 已知,且,求的最小值。解:设,故有。当且仅当同时成立时上述不等式取“=”,即,代入,解得,此时,故的最小值为36。七、 引入对偶式拼凑 根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。例16 设为互不相等的正整数,求证。证明:记,构造对偶式,则,当且仅当时,等号成立。又因为为互不相等的正整数,所以,因此。评注:本题通过对式中的某些元素取倒数来构造对偶式。八、 确立主元拼凑 在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当拼凑,可创造性地使用均值不等式。例17 在中,证明。分析:为轮换对称式,即的地位相同,因此可选一个变元为主元,将其它变元看作常量(固定),减少变元个数,化陌生为熟悉。证明:当时,原不等式显然成立。 当时,。当且仅当,即为正三角形时,原不等式等号成立。 综上所述,原不等式成立。评注:变形后选择A为主元,先把A看作常量,B、C看作变量,把B、C这两个变量集中到,然后利用的最大值为1将其整体消元,最后再回到A这个主元,变中求定。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报