ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:24.50KB ,
资源ID:11559917      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11559917.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BP神经网络数据分类matlab程序代码.doc)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

BP神经网络数据分类matlab程序代码.doc

1、BP神经网络数据分类语音信号特征分类MatLab程序代码% 清空环境变量clcclear% 训练数据预测数据提取及归一化%下载四类语音信号load data1 c1load data2 c2load data3 c3load data4 c4 %四个特征信号矩阵合成一个矩阵data(1:500,:)=c1(1:500,:);data(501:1000,:)=c2(1:500,:);data(1001:1500,:)=c3(1:500,:);data(1501:2000,:)=c4(1:500,:); %从1到2000间随机排序k=rand(1,2000);m,n=sort(k); %输入输出数

2、据input=data(:,2:25);output1 =data(:,1); %把输出从1维变成4维for i=1:2000 switch output1(i) case 1 output(i,:)=1 0 0 0; case 2 output(i,:)=0 1 0 0; case 3 output(i,:)=0 0 1 0; case 4 output(i,:)=0 0 0 1; endend %随机提取1500个样本为训练样本,500个样本为预测样本input_train=input(n(1:1500),:);output_train=output(n(1:1500),:);input_

3、test=input(n(1501:2000),:);output_test=output(n(1501:2000),:); %输入数据归一化inputn,inputps=mapminmax(input_train); % 网络结构初始化innum=24;midnum=25;outnum=4; %权值初始化w1=rands(midnum,innum);b1=rands(midnum,1);w2=rands(midnum,outnum);b2=rands(outnum,1); w2_1=w2;w2_2=w2_1;w1_1=w1;w1_2=w1_1;b1_1=b1;b1_2=b1_1;b2_1=b

4、2;b2_2=b2_1; %学习率xite=0.1alfa=0.01; % 网络训练for ii=1:10 E(ii)=0; for i=1:1:1500 % 网络预测输出 x=inputn(:,i); % 隐含层输出 for j=1:1:midnumI(j)=inputn(:,i)*w1(j,:)+b1(j); Iout(j)=1/(1+exp(-I(j); end % 输出层输出 yn=w2*Iout+b2; % 权值阀值修正 %计算误差 e=output_train(:,i)-yn; E(ii)=E(ii)+sum(abs(e); %计算权值变化率 dw2=e*Iout; db2=e;

5、for j=1:1:midnum S=1/(1+exp(-I(j); FI(j)=S*(1-S); end for k=1:1:innum for j=1:1:midnum dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4); db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4); end end w1=w1_1+xite*dw1; b1=b1_1+xite*db1; w2=w2_1+xite*dw2; b2=b2_1+xi

6、te*db2; w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; b1_2=b1_1;b1_1=b1; b2_2=b2_1;b2_1=b2; endend % 语音特征信号分类inputn_test=mapminmax(apply,input_test,inputps); for ii=1:1 for i=1:500%1500 %隐含层输出 for j=1:1:midnum I(j)=inputn_test(:,i)*w1(j,:)+b1(j); Iout(j)=1/(1+exp(-I(j); end fore(:,i)=w2*Iout+b2; endend % 结果

7、分析%根据网络输出找出数据属于哪类for i=1:500 output_fore(i)=find(fore(:,i)=max(fore(:,i);end %BP网络预测误差error=output_fore-output1(n(1501:2000);%画出预测语音种类和实际语音种类的分类图figure(1)plot(output_fore,r)hold onplot(output1(n(1501:2000),b)legend(预测语音类别,实际语音类别) %画出误差图figure(2)plot(error)title(BP网络分类误差,fontsize,12)xlabel(语音信号,fonts

8、ize,12)ylabel(分类误差,fontsize,12) %print -dtiff -r600 1-4 k=zeros(1,4); %找出判断错误的分类属于哪一类for i=1:500 if error(i)=0 b,c=max(output_test(:,i); switch c case 1 k(1)=k(1)+1; case 2 k(2)=k(2)+1; case 3 k(3)=k(3)+1; case 4 k(4)=k(4)+1; end endend %找出每类的个体和kk=zeros(1,4);for i=1:500 b,c=max(output_test(:,i); switch c case 1 kk(1)=kk(1)+1; case 2 kk(2)=kk(2)+1; case 3 kk(3)=kk(3)+1; case 4 kk(4)=kk(4)+1; endend %正确率rightridio=(kk-k)./kk

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报