ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:1.05MB ,
资源ID:11296664      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11296664.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(行列式计算方法总结.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

行列式计算方法总结.ppt

1、,主要内容,1.定义,2.性质 5条,3.展开定理,4.几个重要结果,范德蒙行列式,P.17例2,三角形行列式的值等于对角元之乘积,行列式的计算方法小结,可从计算方法和行列式特征两个角度总结。,1. 直接用定义(非零元素很少时可用),2. 化三角形行列式法,此法特点:,(2) 灵活性差,死板。,程序化明显,对阶数较低的数字行列式和一些较特殊的字母行列式适用。,3.降阶法,利用性质,将某行(列)的元尽可能化为0,然后按行(列)展开.,此法灵活多变,易于操作,是最常用的手法。,一.方法,*4. 递推公式法 (见附录1),*5、数学归纳法 (见附录2),*6. 加边法(升阶)(见附录3),二、特征,

2、1. 奇数阶反对称行列式 的值为零。,. 阶数不算高的数字行列式,可化为三角形行列式或结合展开定理计算.,. 非零元素很少的行列式,可直接用定义或降阶法。,一些特殊行列式的计算(包括一些重要结果),为对称行列式,例,例,是反对称行列式,不是反对称行列式,两种重要行列式,加到P.17,例 (P.17),证明奇数阶反对称行列式的值为零。,证,当n为奇数时有,例,2. “箭形”行列式 化成三角形行列式,如:练习册P.2 6(2)题,例,另外:见P.21例6, P.4118题,3. 除对角线以外各行元素对应相同,可化成三角形行列式或箭形行列式,另,可化箭形行列式,例 P.43 25题是x,y,n阶,n

3、-1阶,n-1阶,某行(列)至多有两个非零元素的行列式,可用降 阶法或定义或递推公式法或归纳法,5. 各行(列)总和相等的行列式 (赶鸭子法),例 计算行列式(P.20 a 换为y),*或 y 乘第1列加到后面各列:,*,例如 (P.39 12(6) 、(7),P.40 15(3),P.44 27,如:P.41 18, P.42 19, 20(2)、(3),1列(行)“1”的巧妙利用,6 范德蒙(Vandermonde)行列式(重要结果),例 计算行列式,解 V是 的范德蒙行列式,,故,注: 显然,范德蒙行列式,练习册P.6:,12张,将一不含的非零元化成零,某行可能会出现公因子,提公因子,可

4、降次。,7. 部分对角线上含参数的行列式,例 为何值时,D=0?,附录1. 递推公式法,特征:某行(列)至多有两个非零元素。,方法:按此行(列)展开,可能会导出递推公式。,例1(另见A26),按第一行展开好,还是按第一列展开好?,由此得递推公式:,因此有:,D2=?,解法2:从最后一列开始每列乘以x加到前一列,再按第一列展开。,例2,由此可得递推公式:,因此有,又因为,故,则,递推公式法的 步骤:,1. 降阶,得到递推公式;,2. 利用高中有关数列的知识,求出行列式 。,附录2、数学归纳法,例 证明范德蒙(Vandermonde)行列式,证明(数学归纳法),,结论成立。,按第1列展开,根据归纳

5、假设有:,综上所述,结论成立 。,附录3. 加边法(升阶),要点:将行列式加一行一列,利用所加的一行(列)元素 ,将行列式化成三角形行列式。,例9 用加边法计算,n+1阶,还可用赶鸭子法!,将第1行的(-1)倍分别加到第2行,第3行,.,第n+1行得:,(1) 若m=0,则,n+1阶,“箭形”行列式,从加边前的Dn 得出,综合练习题,2. 用多种方法计算下列行列式,(2).,(3).,(1).,3. 计算行列式,设m阶行列式|A|=a, n阶行列式|B|=b,*4. 计算行列式,综合练习题解答,因此,因为: 对于任何两个数码 ,在一排列中要么构成逆序,要么不构成逆序.,如:,2. (1),解法一:,化成三角形行列式,解法二:把 化成0, 再按第三行展开,解法三:,(2).计算行列式,解法一:,解法二:,注意:若按图示法计算不易化简。,(3). 解法一,解法二:用赶鸭子法,提公因子,化三角形行列式或降成二阶,3. 计算行列式,设m阶行列式|A|=a, n阶行列式|B|=b,解,将第n+1列作n次相邻交换,到第1列,将第n+m列作n次相邻交换,到第m列,共作了mn次列交换,得:,*4. 计算行列式,解,利用一行“1”,另一解法见学习指导书。,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报