ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:1.44MB ,
资源ID:11269381      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11269381.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(常微分方程(王高雄)第三版 4.1.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

常微分方程(王高雄)第三版 4.1.ppt

1、第四章 高阶微分方程,4.1 线性微分方程的一般理论,一、解的存在唯一性定理,1 n阶线性微分方程,定义1,定理1,二、齐线性方程的解的性质和结构,定理2,1 叠加原理,证明:,故有,解:,2.线性相关与线性无关,定义2,3 朗斯基(Wronsky)行列式,4 函数的线性相关性与其Wronsky行列式的关系,(1)定理3,证明:,使得,由线性代数理论知,要使方程组存在非零解,则它的系数行列式必为零,注,定理3的逆不成立.,如函数,事实上,若有恒等式,则,推论,(2)定理4,证明:,“反证”,现以这组常数构造函数,由定理2知,又因为,由解的唯一性定理知,由定理4易得下面结论,推论2,由定理1知,

2、方程(4.2)满足初始条件,又因为,由此得定理5,5 齐线性方程线性无关解的存在性,定理5,6 通解的结构,(1)定理6,证明:,首先,由叠加原理(4.11)是(4.2)的解,它包含有n个任意常数,又因为,故(4.11)为(4.2)的通解.,考虑方程组,以这组常数构造,由解的唯一性定理得:,即,(2)推论,(3)基本解组:,注:,基本解组不是唯一的.,三、非齐线性方程与常数变易法,非齐线性微分方程,对应齐线性微分方程,1 非齐线性微分方程解的性质,性质1,证明:,因为,所以,由微分性质两式相加得,性质2,证明:,则,故,2 非齐线性方程通解的结构,定理7,证明:,这些任常数是相互独立的,(4.

3、14)为方程(4.1)的解,由定理6的证明过程易知,由性质1知,故(4.14)为方程(4.1)的通解.,则由性质2知,由定理6知,故,即方程(4.1)的任一解都可由(4.14)表出,(4.14)包括了(4.1)的所有解.,一阶线性非齐微分方程的解法-常数变易法,3 常数变易法,则,为方程(4.2)的通解.,此时(4.15)变为,将它代入(4.1),在理论上,这些另加条件可以任意给出,但为了运算方便,我们按下面方法来给出这n-1个条件,令,得,和表达式,继续上面做法,直到获得第n-1个条件,和表达式,因而方程组的解可唯一确定,设由上面方程求得,积分得,注:,例1,解:,利用常数变易法,令,解得,因此,故通解为,例2,解:,对应的齐线性方程为:,将该齐次方程改写成:,积分得:,所以,故方程有基本解组:,将原方程改写成:,解得,因此,故原方程的通解为,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报