ImageVerifierCode 换一换
格式:PDF , 页数:24 ,大小:1.40MB ,
资源ID:11227592      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11227592.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.有机半导体的基本知识.pdf)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2.有机半导体的基本知识.pdf

1、有机电子学系列讲座 (2): 有机半导体的基础知识 Zhu Furong ( 朱福荣) Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University 2015 年7 月21 日, 吉林大学 2 Outline: 1. Introduction ( 基础科学和新兴技术) 2. Fundamentals ( 有机半导体的基础知识) 3. Transparent electrode ( 透明电极) 4. Organic light-emitting diodes ( 有机电致发光二极管)

2、 5. Organic photovoltaic devices ( 有机光伏) 6. Organic thin film transistors ( 有机薄膜晶体管) 7. Applications ( 有机光电器件的应用) 8. OLED application - Opportunities PCBM contributed very little for light absorption New low bandgap semiconductors and new n-type materials with strong light absorption are desirable P

3、CBM p-type n-type 29 30 N-type materials for OSCs O OCH 3 PCBM CN OC 8 H 17 H 17 C 8 O CN O n PCNEPV S S H 17 C 8 C 8 H 17 OCH 3 H 21 C 10 O CN CN n PF1CVTP Primarily limited to fullerene-based materials Low absorption in visible range Energy loss due to energy levels mismatch between donor and acce

4、ptor31 Efficiency potential of OSCs Ben Minnaert, et al. Prog. Photovolt: Res. Appl. 2007, 15,741748 S C 6 H 13 * * n P3HT PCBM Potential PCE = 15 20% Current highest PCE = 10% Glass ITO PEDOT:PSS P3HT PCBM Al -+ Glass ITO PEDOT:PSS P3HT PCBM Al -+ Inefficient utilization of the solar energy by curr

5、ent available materials. 500 1000 1500 2000 2500 3000 3500 0 2 4 6Electrons Out Photons In (x 10 -18 ) Wavenlength (nm) 500 1000 1500 2000 2500 3000 3500 0.00 0.05 0.10 0.15 0.20Power Out Power In Wavelength (nm) FF 0.7 V oc 0.65 V 14.3% 5 % P3HT PCBM Me O O S nLimitations in OSCs Possible approache

6、s: Low band gap photoactive materials Tandem cells Light harvesting (scattering, SP and waveguide) 32V DS V GS + _ + _ + + + + + + + + + + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + + + + Au P3HT SiO 2 n-type Si 2- 2th GS sat i DS V V L WC I For the case that (saturation region): GS DS V V G S D Field-effect

7、 mobility e n E v V d GS) ( + + + + OTFT measures single carrier mobility (either hole or electron) Organic thin film transistors (OTFTs) 33 34 Poly(3-hexylthiophene) (P3HT) 1996 (Bao et al., APL, 1996, 69, 4108) Very good solubility in organic solvents Well-ordered layers High OTFT-mobility 0.1 cm

8、2 /Vs S C 6 H 13 S C 6 H 13 S C 6 H 13 n tail head HT-HT coupling Orientation of P3HT plays a crucial role in determining OTFT mobility35 Hopping conduction: Electrons hop between the transporting (hopping) sites by thermal activation, L. D. Landau, J. Phys. (USSR) 3, 664 (1933). Charge transport in

9、 organic semiconductor nq Quantify the hopping rate “Conductivity” evaluation: Organic semiconductor is usually amorphous with a disordered structure Band conduction in organic semi- conductor is invalid Energy HOMO LUMO Distance Hopping conduction +ve -v e Mobility measurements Understand charge tr

10、ansport mechanism for materials design and device optimization Charge mobility ( ) is defined as the ratio of charge carrier velocity ( ) and electric field (E) Polymer Mobility Polythiophene (P3HT) 0.1 cm 2 /Vs (hole) 10 -3 cm 2 /Vs Poly fluorene 10 -4 cm 2 /Vs (hole) PPV and PPP derivatives 10 -7

11、-10 -3 cm 2 /Vs (hole) Chemical or structural defects Chemical purity Variations in film morphology Device response time Device efficiency Operational stability Fundamental understanding of charge transport mechanism Charge mobility = /E , cm 2 /Vs Charge mobility 3637 Space charge limited current (

12、SCLC) technique: I-V measurement Field effect transistor Time of flight (TOF) photoconductivity Photoinduced charge extraction by linearly increasing voltage (PhotoCELIV) Measurement techniques 38 TOF photoconductivity measurement TOF experiment provides direct information on the microscopic origin

13、of charge transport in disordered materials. ITO transparent electrode Polymer film Metal electrode (Al/Au) Oscilloscope N 2 laser 337 nm Pulse width: 5 ns R V - + Variable Resistor =d 2 /U.t T =charge carrier mobility d=sample thickness U=applied voltage t T =transit time =d 2 /U.t T =charge carrie

14、r mobility d=sample thickness U=applied voltage t T =transit time39 Non-dispersive transport Time (s) Photocurrent t T Dispersive transport Indicates the excellent purity and chemical regularity of the polymer Indicates the presence of traps and structural disorder in the polymer Photocurrent Time (

15、s) The current stays constant while the carriers drift across the device Transit time can readily be obtained from the linear TOF transient signal No constant current plateau and current drops continuously Double logarithmic plot provides the transit time 40 Limitations of the TOF measurements Limit

16、ed to thick films (micron) Organic electronics, e.g., OLED requires less than 0.1 micron Q 0 CV (the amount of photo-charge should be smaller than the charge stored on the contacts) RC of the set-up transit time41 ) 0 ( 36 . 0 1 3 2 2 max 2 j j At d Oscilloscope Trig ITO Polymer film (Al/Au) Functio

17、n Generator Pulsed laser Pulse Generator R Variable Oscilloscope Oscilloscope Trig ITO Polymer film (Al/Au) Function Generator Pulsed laser Pulse Generator R Variable R Variable ) 0 ( 2 3 max 0 j t j t is the transit time A is the rate of voltage change is the conductivity of the film is the dielect

18、ric constant d is the film thickness Schematic of photo-CELIV method PhotoCELIV Phys. Rev. Letts., 84 4946 (2000). 42 0 5 10 15 20 25 0 1 2 3 4Current Density mA cm -2 Time s Voltage4.5V4V3.5V3V2.5V2V1.5V1V Transit Time 1V dark Figure (a) PhotoCELIV transients for pure P3HTfilm at various applied vo

19、ltages; (b) variation of charge mobility with applied electric field 80 90 100 110 120 130 140 -8.5 -8.0 -7.5 -7.0E 1/2V 1/2 cm -1/2 ln( ) cm 2 /Vs 4.5 x10 -4 cm 2 /Vs PhotoCELIV transients for pure P3HT film shows only the extraction of holes. Charge mobility in P3HT film43 Charge transport models

20、Pool-Frenkel model 1.Based on the carrier transport across the trapping barrier-generated by ionic impurities or by the traps generated by the twisting or bending of the main polymer chains. 2.The Coulomb potential is an effective pair potential that describes the interaction between two point charg

21、es. Where PF =(e 3 / 0 ) 1/2 E = electric field, e=electronic charge =dielectric constant 0 =permittivity of free space l n ( ) E 1/2 carrier transport under a uniform field and isotropic media The mobility of PAT12 and PAT18 against E 1/2 based on pool-frenkel model Jpn.J.Appl.Phys., vol.39 (2000),

22、6309 ) / exp( 2 / 1 0 kT E PF Gaussian disorder (Bassler) model, GDM 22 21 / 2 2 exp exp , 3 GDM CE o r kT kT H. Bassler, Phys.Stat.Sol.175, (1993) 15 the high temperature limit of the mobility the energetic disorder parameter the positional disorder parameter C an empirical constant HOMO LUMO Hoppi

23、ng process The charge transport in conjugated polymers originates from hopping between localized states induced by the Disorder The localized states are distributed (Gaussian) due to positional and energetic disorders in the polymer chain Reduction in width of manifold results in an increase of the

24、mobility X Long range spatial correlation is neglected 2 1 2 2 exp exp 3 GDM E kT 45 Field & temp dependent mobility = width of Gaussian DOS Temperature dependence The energetic disorder parameter can be calculated from the slope of the temperature dependence The positional disorder parameter can be

25、 obtained by plotting against ( /kT) 2 2 1 2 2 0 2 0 2 0 2 exp exp 3 0, 2 exp 3 2 ln ln 3 1000 ln ( ) GDM E kT when E kT kT plot vs T Zero-field mobility calculate zero-field mobility 46 Correlated Gaussian disorder model eaE kT kT CDM 2 78 . 0 exp 5 3 exp 2 / 3 2 S.V Novikov,et al, Phys. Rev.B, 81 (1998) 4472. Spatial correlations in site energy due to long range charge dipole interaction ln( ) E 1/2 can be extended to lower electric fields Intersite distance a can be estimated

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报