ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:499KB ,
资源ID:1116474      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1116474.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(两个变量的相关性.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

两个变量的相关性.ppt

1、1.7 两个变量的相关性,.,思考:在学校里,老师经常对学生说”如果你的数学成绩好,那么你的物理成绩就没有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一定的相关关系.这种说法有根据吗?,相关关系两个变量的关系可能是确定的也可能是不确定的,当自变量取值一定,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.(非确定性关系)函数关系-函数关系指的是自变量和因变量之间的关系是相互唯一确定的.,探究下面变量间的关系:,1.球的体积与该球的半径;2.粮食的产量与施肥量;3.小麦的亩产量与光照;4.匀速行驶车辆的行驶距离与时间;5.角与它的正切值,探究:,.,年龄,脂肪

2、,23,9.5,27,17.8,39,21.2,41,25.9,45,49,27.5,26.3,50,28.2,53,29.6,54,30.2,56,31.4,57,30.8,年龄,脂肪,58,33.5,60,35.2,61,34.6,如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?,从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加”这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断.,下面我们以年龄为横轴,脂肪含量为纵轴建立直角坐标系,作出各个点,称该

3、图为散点图。,如图:,O,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,5,10,15,20,25,30,35,40,从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:,如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。 作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.,O,我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我

4、们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线方程叫回归直线的方程(简称回归方程)。,那么,我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,.,.方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的 和最小时,测出它的斜率和截距,得回归 方程。,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,如图 :,.,方案2、在图中选两点

5、作直线,使直线两侧 的点的个数基本相同。,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,方案3、如果多取几对点,确定多条直线,再求出 这些直线的斜率和截距的平均值作为回归 直线的斜率和截距。而得回归方程。 如图,我们还可以找到 更多的方法,但 这些方法都可行 吗?科学吗? 准确吗?怎样的 方法是最好的?,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,我们把由一个变量的变化去推测另一个变量的方法称为回归方法。,我们上面给出的几种方案可靠性都不是很强,人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式:,以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P80),例1.已知两个变量x和y具有线性相关关系,且5次试验的观测数据如下:那么变量y关于x的回归方程是_解:列表(设回归方程为y=bx+a)计算得:x=140 y=65.6,步骤:1.列表( )2.计算:3.代入公式求a,b4.列出直线方程,练习:书P86A组1、3,作业:P86A组2,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报