ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:240KB ,
资源ID:11097457      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11097457.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高等数学公式大全(2011年考研笔记).doc)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高等数学公式大全(2011年考研笔记).doc

1、高等数学复习公式 第 1 页 共 14 页 高等数学公式大全 *考研笔记*导数公式:基本积分表:axactgxxctgln1)(logs)(es)(2 221)(1)(arcosinxarctgxxCaxaxdshcxadCxctgxctgddx)ln(lnsseesineco2222CaxadxaxadxCrctgtxxdctgCrcsinl21n1slsenilcs22Caxxadxa axaxdaxIndInnn rcsin22l)(221cossi2 22 22020高等数学复习公式 第 2 页 共 14 页 三角函数的有理式积分: 222 11cos1sin udxtguxux ,

2、, , 一些初等函数: 两个重要极限:三角函数公式:诱导公式:函数角 A sin cos tg ctg- -sin cos -tg -ctg90- cos sin ctg tg90+ cos -sin -ctg -tg180- sin -cos -tg -ctg180+ -sin -cos tg ctg270- -cos -sin ctg tg270+ -cos sin -ctg -tg360- -sin cos -tg -ctg360+ sin cos tg ctg和差角公式: 和差化积公式: 2sini2cosco2sin2sincoictgtctg1)(1sincos)cos(ini x

3、arthcxsechstxeshxxx1ln2)(l:2:2)双 曲 正 切双 曲 余 弦双 曲 正 弦 .59047182.)1(limsin0exx高等数学复习公式 第 3 页 共 14 页 倍角公式:半角公式: cos1insico12cos1insico12 scsssin tgtg 正弦定理: 余弦定理: RCBbAa2iiin Cab22反三角函数性质: rctgxarctgxxxarcosrcsi 高阶导数公式莱布尼兹(Leibniz)公式: )()()2()1()(0)()( !)1()! nknnnnnkk uvuknvuvuCv 中值定理与导数应用: 拉 格 朗 日 中 值

4、 定 理 。时 , 柯 西 中 值 定 理 就 是当柯 西 中 值 定 理 :拉 格 朗 日 中 值 定 理 :xFfabfab)(F)()( )23313cos4cosiniintgt22 2221sicosin1cossinitgtt高等数学复习公式 第 4 页 共 14 页 曲率: .1;0.)1(limMsM:.,13202aKayds MsKtgydxs 的 圆 :半 径 为直 线 :点 的 曲 率 : 弧 长 。:化 量 ;点 , 切 线 斜 率 的 倾 角 变点 到从平 均 曲 率 : 其 中弧 微 分 公 式 : 定积分的近似计算: ba nnnba nnba n yyyyxf

5、f yyxf )(4)(2)(3)( 21)()( 13124011010 抛 物 线 法 :梯 形 法 :矩 形 法 :定积分应用相关公式: babadtfxfykrmFApsW)(1),221均 方 根 :函 数 的 平 均 值 : 为 引 力 系 数引 力 :水 压 力 :功 :高等数学复习公式 第 5 页 共 14 页 空间解析几何和向量代数: 。代 表 平 行 六 面 体 的 体 积 为 锐 角 时 ,向 量 的 混 合 积 : 例 : 线 速 度 :两 向 量 之 间 的 夹 角 : 是 一 个 数 量 轴 的 夹 角 。与是向 量 在 轴 上 的 投 影 :点 的 距 离 :空

6、间 ,cos)( sin,cos,Pr)(Pr ,cos)()()(2 2222121 21212121 bacbaccba rwvkjic babababjjj uABABzyxMdzyxzyxzyx zyxzyx zyxzyxuu ( 马 鞍 面 )双 叶 双 曲 面 :单 叶 双 曲 面 :、 双 曲 面 : 同 号 )(、 抛 物 面 :、 椭 球 面 :二 次 曲 面 : 参 数 方 程 :其 中空 间 直 线 的 方 程 : 面 的 距 离 :平 面 外 任 意 一 点 到 该 平、 截 距 世 方 程 :、 一 般 方 程 : , 其 中、 点 法 式 :平 面 的 方 程 :

7、13,2211 ;,1302 ),(,)()()(12222 0000 2200 0000 czbyaxqpzyxcba ptznymxpnmstpznymxCBADzyxdczbyaxDCBA zyxMCBAnz高等数学复习公式 第 6 页 共 14 页 多元函数微分法及应用zyzx yxxyxyxFzyxF dFdddyvdvyudxvxzuxzfz tvtdttvu xffzdzududyxzd , , 隐 函 数 , , 隐 函 数隐 函 数 的 求 导 公 式 : 时 ,当 :多 元 复 合 函 数 的 求 导 法全 微 分 的 近 似 计 算 : 全 微 分 : 0),( )()(

8、,),(),()(, ),(),(2),(1),(1,)(,)( ,)(0),(yuGFJyvvyGFJyuxxxx GFvuvJvuy vu 隐 函 数 方 程 组 :微分法在几何上的应用: ),(),(),(3 0)(,(,2 )(),()(1,0),( ,0),( 0)()()( (,)(000 0000 000 0000 zyxFzyxzyxF zyxFzyxzyxzyxnMzyxF GFGFTGzyxFztytxt tyxzytzytx zzyxzy 、 过 此 点 的 法 线 方 程 : :、 过 此 点 的 切 平 面 方 程、 过 此 点 的 法 向 量 : , 则 :上 一

9、点曲 面 则 切 向 量若 空 间 曲 线 方 程 为 :处 的 法 平 面 方 程 :在 点 处 的 切 线 方 程 :在 点空 间 曲 线 高等数学复习公式 第 7 页 共 14 页 方向导数与梯度: 上 的 投 影 。在是单 位 向 量 。 方 向 上 的, 为, 其 中:它 与 方 向 导 数 的 关 系 是 的 梯 度 :在 一 点函 数 的 转 角 。轴 到 方 向为其 中 的 方 向 导 数 为 :沿 任 一 方 向在 一 点函 数 lyxflf ljieyxflf jyfxyxpyxfzl yffllfz),(grad snco),(grad,),(),( sinco),(),

10、( 多元函数的极值及其求法: 不 确 定时 值时 , 无 极为 极 小 值为 极 大 值时 ,则 : , 令 :设 ,0),( ),(,),(,),(0),(),(202 0000BACyxA CyxfByxfAfff xyx重积分及其应用: DzDyDx zyxDyDx DyxDD adfaFayxdfFayxdfF FMzo IyI dxydyxzAyxfzrdrfdf232232232 2222 )(,)(,)(, )0( ),(,),(,),(1),()sin,co(),( , , , 其 中 :的 引 力 :轴 上 质 点平 面 ) 对平 面 薄 片 ( 位 于 轴 对 于轴对 于平

11、 面 薄 片 的 转 动 惯 量 : 平 面 薄 片 的 重 心 :的 面 积曲 面高等数学复习公式 第 8 页 共 14 页 柱面坐标和球面坐标: dvyxIdvzxIdvzyI MMyxM drrFddrrFdyzf vrxzrfzF dzrFdxyzfryx zyx )()()( 1,1,1 sin),(sin),(),( siicosin),si,(),( ,),(,(,sinco 222 20),022 2, , 转 动 惯 量 : , 其 中 重 心 : , 球 面 坐 标 :其 中 : 柱 面 坐 标 :高等数学复习公式 第 9 页 共 14 页 曲线积分: )()()(),()

12、,( ,)(, 22 tyxdtttfdsyxf tytxLfL 特 殊 情 况 : 则 : 的 参 数 方 程 为 :上 连 续 ,在设 长 的 曲 线 积 分 ) :第 一 类 曲 线 积 分 ( 对 弧。, 通 常 设 的 全 微 分 , 其 中 :才 是 二 元 函 数时 ,在 :二 元 函 数 的 全 微 分 求 积 注 意 方 向 相 反 !减 去 对 此 奇 点 的 积 分 , , 应。 注 意 奇 点 , 如, 且内 具 有 一 阶 连 续 偏 导 数在,、 是 一 个 单 连 通 区 域 ;、 无 关 的 条 件 :平 面 上 曲 线 积 分 与 路 径 的 面 积 :时 ,

13、 得 到, 即 :当 格 林 公 式 :格 林 公 式 : 的 方 向 角 。上 积 分 起 止 点 处 切 向 量 分 别 为和, 其 中系 :两 类 曲 线 积 分 之 间 的 关 , 则 :的 参 数 方 程 为设标 的 曲 线 积 分 ) :第 二 类 曲 线 积 分 ( 对 坐0),(),(),( ),( )0,(),(),(21 212, )()( )cos(),),(),(),()(0),),0 yxdyxQyPyxu uQyPxQGyxPG ydxdxyADyPxQy QPQdyxdL dPttttPdyxQyPtx DLDLLLL 高等数学复习公式 第 10 页 共 14 页

14、 对曲面积分: dsRQPRdxyQzPdyxzdzxyQdyzPxzxRdxyzR dxyzRdzxyQdyP dfszxfzxyzy xyDDD )cosco(),(,),( , ),(),( ),(),(),(,1,),( 22 系 :两 类 曲 面 积 分 之 间 的 关 号 。, 取 曲 面 的 右 侧 时 取 正 号 ;, 取 曲 面 的 前 侧 时 取 正 号 ;, 取 曲 面 的 上 侧 时 取 正 , 其 中 :对 坐 标 的 曲 面 积 分 :对 面 积 的 曲 面 积 分 :高斯公式: dsAvsRQPdsAsnzRyQx sxyzyvzyxPnn i )cocos( .

15、,0div,di )cscs()(成 :因 此 , 高 斯 公 式 又 可 写 ,通 量 : 则 为 消 失的 流 体 质 量 , 若即 : 单 位 体 积 内 所 产 生散 度 : 通 量 与 散 度 :高 斯 公 式 的 物 理 意 义 斯托克斯公式曲线积分与曲面积分的关系: dstARzQdyPxARQPzyx yPxQRzPyRzQPxdxyzdy RdzQyPxRPzQyR 的 环 流 量 :沿 有 向 闭 曲 线向 量 场旋 度 : , , 关 的 条 件 :空 间 曲 线 积 分 与 路 径 无上 式 左 端 又 可 写 成 : kjirot coscos)()()( 高等数学复

16、习公式 第 11 页 共 14 页 常数项级数: 是 发 散 的调 和 级 数 :等 差 数 列 :等 比 数 列 : nqqnn13212)(112 级数审敛法: 散 。存 在 , 则 收 敛 ; 否 则 发、 定 义 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 :、 比 值 审 敛 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 别 法 ) :根 植 审 敛 法 ( 柯 西 判、 正 项 级 数 的 审 敛 法 nnnnsusUulim;31li21lim211 。的 绝 对 值其 余 项, 那 么 级 数 收 敛 且

17、 其 和如 果 交 错 级 数 满 足 莱 布 尼 兹 定 理 :的 审 敛 法或交 错 级 数1113243 ,0li )0,( nnn n urrusuu绝对收敛与条件收敛: 时 收 敛 时 发 散 级 数 : 收 敛 ; 级 数 : 收 敛 ;发 散 , 而调 和 级 数 : 为 条 件 收 敛 级 数 。收 敛 , 则 称发 散 , 而如 果 收 敛 级 数 ;肯 定 收 敛 , 且 称 为 绝 对收 敛 , 则如 果 为 任 意 实 数 ;, 其 中1)1(1)()2()1(232pnpnnun 高等数学复习公式 第 12 页 共 14 页 幂级数: 01)3(lim)3(111 1

18、121032 RaaRRxxaxaxx nnnn 时 ,时 ,时 ,的 系 数 , 则是, 其 中求 收 敛 半 径 的 方 法 : 设 称 为 收 敛 半 径 。, 其 中时 不 定时 发 散时 收 敛, 使在数 轴 上 都 收 敛 , 则 必 存 收 敛 , 也 不 是 在 全, 如 果 它 不 是 仅 在 原 点 对 于 级 数 时 , 发 散时 , 收 敛 于 函数展开成幂级数: nnn nnxfxffxfx RffR xfxfxxf !)0(!2)0()(0)(0 lim,()!1 )(!)(!2)()10( 00)(2000时 即 为 麦 克 劳 林 公 式 : 充 要 条 件 是

19、 :可 以 展 开 成 泰 勒 级 数 的余 项 :函 数 展 开 成 泰 勒 级 数 :一些函数展开成幂级数: )()!12()!53sin )1(1)(1)( 2 xnxxx nmmm 欧拉公式: 2sincosincoixiixiix exe 或三角级数: 。上 的 积 分 在任 意 两 个 不 同 项 的 乘 积正 交 性 : 。,其 中 , 0 ,cos,in2cos,incs,i1 )in()i()( 100 xxxtAbaAxbattf nnn高等数学复习公式 第 13 页 共 14 页 傅立叶级数: 是 偶 函 数 ,余 弦 级 数 : 是 奇 函 数 ,正 弦 级 数 : (

20、 相 减 )( 相 加 ) 其 中 , 周 期 nxaxfnxdfab bffnxdfbfanxbxfnn nnnnnn cos2)(2,10cos)(20 i3,i124316246142853)3,1(si)(12,0co)si(2)(000222210 周期为 的周期函数的傅立叶级数:l2llnlnnnndxlfblfa llblxxf )3,21(si)(1,0co)si()(10 其 中 , 周 期微分方程的相关概念:即 得 齐 次 方 程 通 解 。 ,代 替分 离 变 量 , 积 分 后 将, 则设 的 函 数 , 解 法 :, 即 写 成程 可 以 写 成齐 次 方 程 : 一

21、 阶 微 分 方 称 为 隐 式 通 解 。 得 : 的 形 式 , 解 法 :为: 一 阶 微 分 方 程 可 以 化可 分 离 变 量 的 微 分 方 程 或 一 阶 微 分 方 程 : uxyudxudxuxdyxu xyyfyCxFGdxfg dxfgyQdyPyf )()(,)()()( )()(0,),( 高等数学复习公式 第 14 页 共 14 页 一阶线性微分方程: )1,0()(2 )0)(, )(1 )()(nyxQPdxy eCdxeQCxxyPdx dxPPd,、 贝 努 力 方 程 :时 , 为 非 齐 次 方 程 ,当 为 齐 次 方 程 ,时当、 一 阶 线 性

22、微 分 方 程 :全微分方程: 通 解 。应 该 是 该 全 微 分 方 程 的 , 其 中 : 分 方 程 , 即 :中 左 端 是 某 函 数 的 全 微如 果 Cyxu yxQuyxPyxdP),( ),(),(0),(,)(二阶微分方程: 时 为 非 齐 次时 为 齐 次, 0)()()(2 xfyxQdPx二阶常系数齐次线性微分方程及其解法: 212,)(2 ,(*)0)(1,0(*)r yrqpqyp式 的 两 个 根、 求 出 的 系 数 ;式 中的 系 数 及 常 数 项 恰 好 是, 其 中、 写 出 特 征 方 程 :求 解 步 骤 : 为 常 数 ;, 其 中 式 的 通 解 :出的 不 同 情 况 , 按 下 表 写、 根 据 (*),321r的 形 式,1r(*)式的通解两个不相等实根 )04(2qp xrxrecy21两个相等实根 r1)(21一对共轭复根 )(2241pqpirir, , )sinco2xeyx二阶常系数非齐次线性微分方程 型为 常 数 ;型 , 为 常 数, sin)(cos)()(,xPxexffylm

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报