1、 南 京 理 工 大 学毕业设计(论文)外文资料翻译学院( 系): 机械工程学院 专 业: 机械工程及其自动化 姓 名: 陆建 学 号: 0701500122 外文出处: IEEE/IEE Electronic library(IEL) 附 件: 1.外文资料翻译译文;2. 外文原文。 (用外文写)指导教师评语:翻译内容符合专业要求,全文整体翻译基本准确,语句表达基本通顺,但也有些语句表达的不够通顺,译文总体上符合原文意思。签名: 年 月 日注:请将该封面与附件装订成册。附件 1:外文资料翻译译文导电胶粘剂机器人一种新型,健壮,电力可控制附着技术的爬墙机器人Harsha Prahlad, Ro
2、n Pelrine, Scott Stanford, John Marlow, and Roy Kornbluh摘要本文介绍了一种新型夹紧称为兼容电胶合技术,同时也是第一次将这种技术应用于爬墙机器人。正如其名称所示电胶合是一种电气控制粘连技术,它涉及到采用电源连接到适合机器人移动的顺滑板来诱导墙体表面的静电荷。立足于移动机人,夹紧力高(1 平方厘米的夹紧表面承受 0.2-1.4 牛顿的力,力的具体大小取决于基板)已经在各种各样的常见的建筑基质中得到证实,无论是在粗糙还是光滑抑或是导电体还是绝缘体中都得到证实,与传统的粘合剂或干燥粘合剂不同,它可以为了符合流动性或配合清洗而被调制或关掉,该技术利
3、用数量非常小的力量(大约 20 微瓦/牛顿的承受力量)并且展示了能重复地夹在有大量灰尘或其他杂物覆盖在基板的墙中的能力,通过使用这项技术,国际斯坦福研究所展示了各种各样的爬墙机器人包括跟踪和腿机器人。I 引言最近的事件,诸如自然灾害,军事行动,或公众安全的威胁,强大的侦察机器人已经得到越来越多的重视,而能在三维空间里穿越地形复杂的城市的机器人更加受到重视。创新地机器人具有良好的净空能力,通常使用很多模式的移动,如轮式或跟踪运动,腿运动,跳跃运动的机器人。然而,它的攀爬或者停在垂直的表面建筑物及其他设施的能力,对其在军事用途提供了独特的应用空间。如城市侦察,传感器部署,建立城市网络节点,以及在民
4、事搜索和救援行动。其垂直机动性和在高处栖息方面的能力也有众多的商业应用,如管道和槽罐检查或访问够不着的场合,如窗口区域清洁。在大多数情况下,像 MAV 这样的飞行器的使用代表着在功耗,复杂性以及在狭窄空间中的导航能力的挑战,因此人们对于爬墙机器人在垂直表面的粘附能力具有浓厚的兴趣。最常见的商用爬壁机器人使用吸盘创建对某些类型的基板的粘附力。吸盘只能在光滑无孔表面工作,而且磁轮的版本只能在铁磁墙工作,两者在许多情况下都有严重的局限性。已应用的其他技术包括传统的粘合剂表面用以附加机器人在墙上,最近,用刚毛模仿壁虎脚的“干的胶粘剂”技术已经被研发出来。这些“干燥”粘合剂使用连接物的范德华力和提供优质
5、的连线夹紧力并且无残留物留在攀爬过的表面,然而,常规的以及“干“粘合剂总是遭受“永远在“的困扰。这意味着随着时间的推移, 他们由于吸收灰尘而减少其有效性,并且需要一些能量用于机器人在移动过程中客服基底的粘附力。另一种最近已推行的仿生办法,是使用一系列的微型脊椎攀登有一些内在的表面粗糙度的垂直的墙, 虽然这种方法可以确保良好的机械接触,通常不受表面上的污染物或粉尘物质的干扰,使用这种方法在光滑平面上爬行很难奏效。在更大的尺度上,爪子用于代替微型脊椎爬墙,但爪子可能损坏物和也不适用在光滑的表面。在当前的工作,作者为解决爬墙机器人以前的一些缺点提出了一项新发明称为电胶合技术。电胶合技术是基于柔顺表面
6、的使用,通过顺从的电极模式设计来产生一个对象(机器人)和基质(建筑物的表面)之间的静电吸引力的。电胶合技术已被证明在各种各样表面上具有高达 2 N/cm2 的优异附着力压力,包括的材料,如普遍存在于建筑的混凝土、木材、钢材、玻璃和干式墙。初步结果也显示了在如潮湿的混凝土的湿润表面上的良好导电胶粘剂能力。,对电胶合技术爬墙机器人和其他方法的爬墙机器人的定性比较的相对优势与劣势列于表 I。II 电胶合-操作原则和附着力特点如图一所示,电胶合技术使用基体材料(墙面)和导电胶粘剂垫之间的静电作用,这些垫是由是由沉积在高分子聚合物表面的导电电极构成,当正反电荷在邻近的电极旁被激发,由于电场作用将在基板上
7、产生相反电荷,从而导致电极和衬底上感应电荷之间产生静电粘附力,由于气穴(与基板表面的表面粗糙度规格相一致)以及夹具上的绝缘材料的原因,这些电荷并不和夹具上的那些电荷中和。工作原理与一些用来装硅片材料静电卡盘,或其他自动处理材料的专业夹持器相似,我们注意到同样的几何尺寸的夹具可以用来夹钳绝缘体和导电基质,即使他们的物理原理不同,图一所示的夹具可以以许多方式制造,高度符合的夹具是能够粘附更广泛的粗糙表面的关键点。如果需要达到高度的一致性,人们可以存放顺从电极(通常是碳混合而成得聚合物粘合剂)以及弹性绝缘体(例如、硅树脂)。但是,应该指出的是,有些合规也可以通过夹具边界条件的操作来实现,如第三部分机
8、器人的设计所示。因此,更多的刚性材料如金属或刚性聚合物表面的碳涂料,例如聚脂或聚酰亚胺也可以作为导电胶粘剂材料。导电胶粘剂夹具在不同电位通常有至少两个独立的电极,电极上的电荷通常通过一个连接到夹具材料的高电压的使用而触发。我们注意到,尽管夹具材料采用高电压(通常是 1 - 5 千伏),由于在电极上方的绝缘层的存在它只需要非常少量的电流(每 10 至 20 牛顿纳安的侧向力顺序排列)因此,商用的不引人注目的形象,低功率 DC - DC 转换器可以用来寻址夹具体。图二显示了连接到各种材料上的夹具。垫的每单位面积所能够支持的体重或载荷取决于很多参数包括材料的性质和夹具的设计,基板的结构,电极形貌,钳
9、位的使用电压。表二列出了典型的墙体基材上的夹紧压力。然而,我们注意到,这个概念很容易扩展到大型有效载荷。图二显示了一个大约 300 平方英寸的导电胶粘剂的钳位举起 75 磅重物体的例子。因此,电胶合技术适合大型或小型的自动载荷应用(对一个规模扩大的部位持有压力余量)。由于电极和弹性体是高度兼容的(通过弹性材料和/或符合边界条件下使用),导电胶粘剂垫符合粗糙表面(图 3), 使电极保持与整个表面非常接近,从而大大提高了整体夹紧力。当发现与距离保持一致时,在一些条件下静电力会发生显著的下降,保持紧密接触的重要性就会显得尤为重要。使用图 1 所示的夹子。 ,我们已经成功地演示了电胶合技术关键的具有良
10、好的纵向流动性的方面。对于各种表面的夹紧压力(木材,石膏板,玻璃,水泥,钢铁,以及各种塑料至今已经成功地通过测试) 。快速夹紧和松开(响应时间“10-50 毫秒) 。超低功耗举起一个静态的粘附于介质的重物(测量值大约 20 微瓦/牛顿重量承重)。适应粗糙表面,角落,带裂纹和穿孔材料的能力。能够钳住附有灰尘,潮湿,或其他杂质的表面。便于以现货供应的部件制作和容易制作包括特别设计的机器人,甚至现成的机器人。导电胶粘剂夹钳,没有在平面上留下任何痕迹(机器人能因此而隐蔽并且不损伤基板材料)。对于一个使用电胶合技术竖直夹钳重量的效果最容易通过正常夹紧压力(PN),夹具和物体表面的摩擦力系数,有效侧面夹紧
11、压力来评估。有效的横向夹紧压力的边界只是实测最大横向力除去夹打滑的区域。这三个相关的数量的关系式是。LNLPorPPL 是爬墙优点中的一个重要数据,在重力的作用下对夹具施加一个侧向力通过增加正常夹紧力增加 PN 或摩擦系数来增加力。PN 是在正常重力作用下衡量在天花板上移动性的重要参数。基板上的各种测量静电压力见表二。在某些情况下可以使用更高的电压,大幅度增加表二中所示的值。从表二可以看出,电胶合技术施加足够的力量来支撑几乎所有表面上的合理大小的机器人。例如,一个 200 克质量机器人可以在潮湿的实体上使用约 10 平方厘米的钳面积爬上墙。假设一个额外的 4 个安全因素,在运动补偿动态力,四十
12、平方厘米(例如 5,厘米8 厘米 )的轨道区域足够支持正常的运动。正如我们在本文后面显示,这些力以及部位已经在几个现实的机器人中得到证明。另外一个机器人的有用的功能设计是低功耗的电胶合技术夹。例如,在上述情况下,在许多基片上,举起 40 平方厘米的夹具的力量已测得约 0.25 毫瓦(由于在墙体和夹具之间存在良好的绝缘体或者墙体本身绝缘性能就很好,导致了功率低)。这意味着有 50的转换效率,在最坏的情况下,两节重量 7.6 克的 AAA 电池可容纳“高位“模式机器人近一年的电量(计算主要假设为 AAA 级 L型 92 劲量公司的 1.5 V 电压容量的 1250 毫安锂电池)。事实上,功耗可以更
13、低,甚至可以通过其他基片和增加锂电池的电池块质量分数延长其使用寿命(在某些情况下,长达数十年的保持时间是可行的) 。因此,电胶合技术所需的电源是机器的运动所要求电源中的很小一部分,而且他的质量并不在构成机器人的总质量中占明显的百分比。结论陆建同学的翻译工作量基本达到要求,译文基本通顺,较符合原文含义,出现的错误较少,基本完成了翻译任务,并说明该同学基本掌握了英翻中的技能。附件 2:外文原文 (复印件)Electroadhesive RobotsWall Climbing Robots Enabled by a Novel, Robust, and Electrically Controllab
14、le Adhesion TechnologyHarsha Prahlad, Ron Pelrine, Scott Stanford, John Marlow, and Roy KornbluhAbstractThis paper describes a novel clamping technology called compliant electroadhesion, as well as the first applicationof this technology to wall climbing robots. As the name implies,electroadhesion i
15、s an electrically controllable adhesion technology.It involves inducing electrostatic charges on a wall substrate using a power supply connected to compliant padssituated on the moving robot. High clamping forces (0.21.4Newton supported by 1 square centimeter of clamp area,depending on substrate) ha
16、ve been demonstrated on a wide variety of common building substrates, both rough and smoothas well as both electrically conductive and insulating. Unlike conventional adhesives or dry adhesives, the electroadhesion can be modulated or turned off for mobility or cleaning. The technology uses a very s
17、mall amount of power (on the order of 20 microwatts/Newton weight held) and shows the ability torepeatably clamp to wall substrates that are heavily covered in dust or other debris. Using this technology, SRI International has demonstrated a variety of wall climbing robots includingtracked and legge
18、d robots.I. INTRODUCTIONRECENT events, such as natural disasters, military actions, or public safety threats, have led to an increased emphasis on robust reconnaissance robots, particularly ones traversing complex urban terrain in three dimensions. Innovative ground robots with good obstacle clearan
19、ce capabilities typically use many modes of mobility such as wheeled or tracked motion 1, legged motion 2, or jumping motion 3. However, the ability to scale or perch on vertical surfaces of buildings or other structures offers unique capabilities in military applications such as urban reconnaissanc
20、e, sensor deployment, and setting up urban network nodes, as well as in civil search and rescue operations. The vertical mobility and perching abilities also have numerous commercial applications such as pipeline and tank inspection or accessing hard-to-reach areas for applications such as window cl
21、eaning 4. In most of thesecases, the use of a flying vehicle such as an MAV (Micro-Air Vehicle) represents a significant challenge in power consumption, complexity, and ability to navigate in confined spaces. There has thus been a sustained interest in wallclimbing robots that use a variety of diffe
22、rent methods to clamp onto vertical substrates.The most common commercially available wall-climbing robots use suction cups to create adhesion to some types of substrates 5. Suction cups work only on smooth and nonporoussurfaces, and magnetic wheel versions work only on ferromagnetic walls, both sev
23、ere limitations in many cases. Other technologies that have been employed include conventional adhesive surfaces used to attach the robot to the wall. More recently, “dry adhesive” technologies that mimic gecko feet with tiny setae have been explored 6, 7. These “dry” adhesives work using Van der Wa
24、als forces of attachment and offer good clamping forces with no residue left behind on the climbing surface. However, both conventional as well as “dry” adhesives suffer from being “always on,” which implies that they reduce their effectiveness over time by attracting dust, and require some power to
25、 overcome the adhesive forces in peeling away from the substrate during the robot motion. Another biomimetic approach that has been recently pursued is the use of anarray of microspines to scale vertical walls that have some inherent surface roughness 8. While this approach ensures good mechanical c
26、ontact and is mostly independent of material contaminants or dust on a surface, it is difficult toclimb on smooth surfaces with this approach. On larger scales, claws might be used for wall climbing in place of microspines, but claws may damage the substrate and are also inapplicable on smooth surfa
27、ces.In the current work, the authors present a new invention called electroadhesion aimed at addressing some of the shortcomings of previous technologies for wall climbing robots. Electroadhesion is based on the use of compliant surfaces with patterns of compliant electrodes designed to create elect
28、rostatic forces of attraction between an object (the robot) and a substrate (building surface). Electroadhesion has been shown to operate with excellent adhesion pressures of up to 2 N/cm2 on a wide variety of surfaces including materials such as concrete, wood, steel, glass, and drywall commonly fo
29、und in and on buildings. Preliminaryresults also show the ability for good electroadhesive forces on damp surfaces such as damp concrete. A qualitative comparison of the relative advantages and limitations of electroadhesion versus other methods for wall climbing robots is listed in Table I.II. ELEC
30、TROADHESIONOPERATING PRINCIPLEAND ADHESION CHARACTERISTICSAs shown in Fig. 1, electroadhesion uses electrostatic forces between the substrate material (wall surface) and the electroadhesive pads. These pads are comprised of conductive electrodes that are deposited on the surface of apolymer. When al
31、ternate positive and negative charges are induced on adjacent electrodes, the electric fields set up opposite charges on the substrate and thus cause electrostatic adhesion between the electrodes and the induced charges on the substrate. These charges do not neutralize themselves to those on the cla
32、mp because of the trapped air gaps (with dimensions on the order of surface roughness of the substrate) as well as insulator material on the clamp. The principle of operation is similar on some materials to electrostatic chucks used to hold silicon wafers 9 or other specialized grippers for robotic
33、handling of materials 10. We note that the same geometry of clamp can be used to clamp to both dielectric and conductive substrates, albeit with slightly different physical mechanisms.The clamps shown in Fig. 1 can be made in a variety of ways. High compliance of the clamp is key to being able to ad
34、here to a wide range of substrate roughnesses. If high degree of compliance is desired, one can deposit compliant electrodes (typically carbon mixed into a polymer binder) as well as elastomeric insulators (e.g., silicones). However, it should be noted that some compliance could also be achieved by
35、manipulating the boundary conditions of theclamps, as shown in the robot designs in Section III. Thus, more rigid materials such as metal or carbon coatings on rigid polymers such as Mylar or polyimide can also be used as the electroadhesive materials.Electroadhesive clamps are typically comprised o
36、f at least two sets of independent electrodes at different potentials. The charge on the electrodes are typically induced through the use of a high voltage power supply connected to the traces of the clamp material. We note that although the clamp material uses high voltage (typically 15 kilovolts),
37、 it needs very small amounts of currents (of the order of 1020 nanoamps per Newton of lateral force) due to the presence of the insulation layer above the electrodes. Thus,commercially available low profile, low power DC-DC converters 11, 12 can be used to address the clamps.Fig. 2 shows the clamp a
38、ttached to a large variety of materials. The weight or payload that can be supported by the pads per unit area depend on many parameters including the material properties and design of the clamp, the substrates structure, the morphology of electrodes, and voltages used by the clamp. Table II lists t
39、he clamping pressured on typical wall substrate materials. However, we note that the concept is readily scalable to large payloads, asillustrated by a 75 lb weight held using a clamp of approximately 300 square inches of electroadhesive pad shown in Fig. 2. Thus, electroadhesion is suitable to robot
40、ic applications involving large or small payloads (with allowance for a scaled-up area for a given clampingpressure).Since both the electrodes and the elastomer are highly compliant (through use of elastomeric materials and/or compliant boundary conditions), electroadhesive pads conform to rough sur
41、faces (Fig. 3), enabling the electrodes to maintain a close proximity with the entire surface and thereby greatly increasing the overall clamping force. The importance of maintaining intimate contact is evident when one notes that in some regimes the electrostatic forcestypically drop off as the dis
42、tance squared.Using the clamp shown in Fig. 1, we have successfully demonstrated aspects of electroadhesion that are critical for good vertical mobility: High clamping pressures on a variety of substrates (wood, drywall, glass, concrete, steel, and a variety of plastics have been successfully tested
43、 to date). Fast clamping and unclamping (response time 1050ms). Ultra-low power for holding a static weight attached to a substrate (measured values are approximately 20 microW/Newton weight held). Ability to conform to a surface roughness, around corners, and across materials with cracks or perfora
44、tions in them. Ability to clamp even with the presence of dust, dampness, or other surface impurities. Ease of fabrication using off-the-shelf components and readily integratable into both specially designed robots and even off-the-shelf robots. Electroadhesive clamps leave no marks on the surface (
45、the robots can therefore be covert and non-damaging to the substrate materials).The clamping performance for vertical holding of a weight using electroadhesion can be most easily evaluated in terms of the normal clamping pressure (PN), the friction coefficient between substrate and clamp (), and the
46、 effective lateral clamping pressure (PL). The effective lateralclamping pressure PL is just the measured maximum lateral force without slippage divided by the clamp area. The three quantities are related byLNLPorPPL is the most important figure of merit for wall climbing,where gravity exerts a late
47、ral force on the clamp, and it can be increased either by increasing the normal clamping pressure PN or by increasing the friction coefficient. PN is the most important figure of merit for mobility on ceilingswhere gravity exerts a normal force.The measured electrostatic pressures on a variety of su
48、bstrates are given in Table II. In some cases higher voltage can be used to significantly increase the values shown inTable II.From Table II, it can be seen that electroadhesion exerts sufficient forces to hold up a reasonable sized robot on almost all surfaces. For example, a robot with a mass of 2
49、00g could climb up the wall using approximately 10 square cm of clamp area in the case of damp concrete. Assuming an additional factor of safety of 4 to compensate for dynamic forces during locomotion, 40 square cm (5 cm 8 cm, for example) of track area is sufficient for robust locomotion.As we show later in this paper, these forces and areas have been demonstrated in several realistic robots.An additional useful feature for robotic design is the low powe