1、,第一章 随机事件及其概率,1.4 概率的古典定义,1.古典概型,概率的古典定义,1.4 概率的古典定义,例1,1.4 概率的古典定义,1.4 概率的古典定义,表达方法:,1.4 概率的古典定义,例2,(1) 有放回情形:,样本空间中基本事件总数:,所包含的基本事件总数:,于是,,解:,1.4 概率的古典定义,(2) 无放回情形,样本空间中基本事件总数:,所包含的基本事件总数:,于是,,1.4 概率的古典定义,eg3(继上题),解:,样本空间中基本事件总数为:,所包含的基本事件总数为:,将抽样方式改为“一次任取 件样品”,求相应的概率.,于是,,1.4 概率的古典定义,附:不放回依次抽样与一次
2、抽样的等价性,1.4 概率的古典定义,例4,解:,基本事件总数为:,1.4 概率的古典定义,抽签次序无关性,一批产品共有 件,其中有 件次品.每次从中任取一件,取出后不放回,接连取 个产品.求第 次取得次品的概率.,* 2.几何概型, 定义,假设随机试验包含无穷多个基本事件,且每个基本事件都是等可能的.,1.4 概率的古典定义,例1,1.4 概率的古典定义,1.4 概率的古典定义,1.4 概率的古典定义,小 结,1. 古典概型:构建合适的样本空间,正确计算样本点个数.构建样本空间时,要特别注意样本点的等可能性.,2. 两个重要的概率模型-无放回抽样(超几何分布),抽签次序无关性.,3. 几何概型-古典概型的推广:样本空间为无穷集合.,思考题,试求下列事件的概率:,1.4 概率的古典定义,从0,1,2, ,9共十个数字中任意选出三个不同的数字,1.4 概率的古典定义,1.4 概率的古典定义,1.4 概率的古典定义,