ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:103.90KB ,
资源ID:10828920      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10828920.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(复变函数—课后答案习题三解答.pdf)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

复变函数—课后答案习题三解答.pdf

1、- 1 - 5 s 1./ L9 s+idzz302b 11 i3+ L21 L 3 3 wL ( ) ( ) = 0ImRe dzzfdzzfCC T T b A b 7 () zzf = 1: =zC 5 ( )zf x 3+i C2C1O C3i C4y (z) 3 - 2 - () =20ReReiiCdeedzzf ()=+=200icosisincos d () =20iiImIm deedzzfC()=+=200cosisinsin d 4 1zz= # Os T 2iCzdz =v C_ |1z = b 12iCCzdz dzz=vv Os T 59 s dzzzC C_ 1

2、2=z 2 4=z 1y 2| =z 2| =z 4|2= zzz V7zz4= # i422|2|2|4=dzzdzdzzzzCzZ2y C 4| =z 16|2= zzz V7zz16= # i844|4|4|16=dzzdzdzzzzCzZ6 4E/ sb O Os Tb 7 wL_9 / sb 1Czdzze2 1|2:| =zC 222Cdzzav :| |Cza a = 3i21zCedzz +v :| 2i | 3/ 2Cz = 43Czdzz v :| | 2Cz= 523,(1)(1)Cdzzzv:| | 1Cz r= wL 722(1)(4)Cdzzz+v :| | 3/

3、2Cz= 8sinCzdzzv 1|:| =zC 9Cdzzz22sin 2|:| =zC 105zCedzzv 1|:| =zC 1 Cauchys T=Czzzeedzzei2i2222 2 1=+=+=CCazaazdzazazazdzi1i2122 2 +=Cdzazdzazaazdz 112122i0i221aa = 3 Cauchys Tii i2i/( i)2i /1-zz zCC zedz edz z eezzz =+=+vv- 3 - 4 5 6 O T ( 0 7y$f i=z C = i2=z C # # Cauchys T =+=+=+31|i|2231|i|2222)

4、4)(1()4)(1()4)(1(zCzzzdzzzdzzzdz=()() ()()=+=+31|i|231|i|2i4i1i4i1zzdzzzzdzzzzi2i2)4i)(1i2)4i)(1i2=+=zzzzzz 033=8 Cauchys T0sin2isin | 0zCzdzzz= =v9 p T () 0sini22sin22=zCzdzzz10 p T(4)052i i() |4! 12zzzCedzez =v89 / 5 13i2izedz 20i6ch 3zdz 3i2-isin zdz 410sinzzdz 5i0(i)zzedz 6i211tan(1i )coszdzz+L

5、b 13i23i2ii02zzeedz=“ 200i/6i61ch 3 sh 3 | i/33zdz z = =3ii2i-i-i -i1cos2 sin2 1sin ( ) | ( sh 2 )i224 2zz zzdz dz =41100sin (sin cos ) | sin1 cos1zzdz zz z= =5ii00( i) (i1 ) | 1cos1i(sin11)zzzedz ze= =+6i2i 2 21211tan 1 1(tan tan / 2) | (tan1 tan 1 th 1) i th1cos 2 2zdz z zz+=+ =+ + +99 / s 143(),:

6、|412iCdz C zzz+=+v _ 222i,:|1|61Cdz C zz=+v _ 312123cos, :|2 :|3CC Czdz C z C zz=+=v _ _ - 4 - 416,i25CdzCziv _ +53,|1 :|1()zCedz a a C zza=v _ 143()2i(43)14i12iCdzzz +=+v“ 22| i|1 | i|12i 2 /( i) 2 /( i)01- iCz ziz izdz dz dzzzz= +=+=+= vv v312 1 200333cos cos cos 2 i 2 i(cos ) | (cos ) | 02! 2!zzC

7、C C C Czzdz dz dz z zz =+= =vvv4 2iiCdzz=v5 |1a H331/( ) | | 1 0()zCeza z dzzav # “ |1a wL H210Cdzz=vb wL C = H0212i(1)| 0zCdzz= =v wL C H21/ z C =#210Cdzz=vb 11/ s M$s 2 ? M V 1$ I $ 1| 2zzdzz=v 2| 4zzdzz=v 2i| 2 02i 0zzdz e dz=v 2i| 4 04i 0zzdz e dz= =v# sMb ? M V 1yzz Bf b 12 ! u D z D = |1z = iB

8、 D = iBH wL C z 201Re .14zd=+ f 211 + #9 V 0 z iBH wL Cs Hs 1b5i1222000 011 2icos.14 2zeddxd dxe =+ =+ + s0s 2i1 e+ - 5 - B1 C1 C2 B2 MNE FB GH# 201Re .14zd=+13 !1C 2C M M Na e wL usY1B 2B b1B 2B s Bb T ()f z 1B B 2B B =1C a2C 9 12() ()CCf zdz f zdz=vvb 1B B ()f z f 5 O () 0MENGMfzdz=v () 0MHNFMfzdz

9、=v5 () () () ()NGM MEN MHN NFMf zdz f zdz f zdz f zdz+=+12() ()CCf zdz f zdz=v vb 14 ! C V a -a _e wL a , k a -a C 9 sCdzazz22b i a C =7 -a C H =+=+=CazCazzdzazazzdzazzii222 b ii a C =7 a C H =+=ccazazzdzazazzdzazzii222 iii a a C = H !1C ,2C sY aa , sl P21,CC ( C = OM9c5 # Cauchys T =+=+=ccciiidzaza

10、zzdzazazzdzazz21222 iv a a C H Cauchy-Gourssat =Cdzazz022b 15 !1C 2C Hc9M_e wL 122200100 002,1sin2i sin ,CCzzCzdz zdzzz zz zzC+=vv = H = H Cauchys T01zC = H01222001|2izzCzdzzzzz= =v7201sin02iCzdzzz=v 02zC = H120102iCzdzzz=v702001sinsin | sin2izzCzdzzz=vb# b 16 !f ()zf 1|0 wL = Db T () ()zgzf = C k C

11、 = ) ( ) ( )zgzf = 9 b y () ()zgzf , D =)# C # =9) !0z C = B5Cauchys T ()( )()( )=CCdzzzzgizgdzzzzfizf000021,21 y C () ( )zgzf = # ( ) ( )=CCdzzzzgdzzzzf00 V7 () (),00zgzf = 0z i C = ( ( ) ( )zgzf = b 18 ! u D ()f z D =T_12KK 21KKc 0z 12KKW B k3.5.1 12().CKK+1 nm v 78: M ZEb 19 ! ()zf Y u D = O , C

12、D = BHe; wL s( )()Czfzf dz ,$ I $ ,by ()zf D =# ( )zf O f V7 ()zf D =9y D = () 0zf #( )()zfzf D = V7 C # C =9 Cauchy-Gourssat ()()=Cdzzfzf0b 20 k O C I V e wL$ 21 ! ()f z u D = C D = iBH_e wL D = C iB0z T200( ) ( )()CCfz fzdz dzzz zz=vv b Cauchy s T000( )2i()| 2i( )zzCfzdz f z f zzz=v 7 T0020() 2i(

13、) | 2 i ( )() 1!zzCfzdz fz fzzz=v# T b 22 T (, )x y (, )x y = O a Z 7yxs =xyt = +* ist+ ix y+ f b (, )x y (, )x y = 7yxs = xyt = + ,st B ,st C RZ Vbi 0xx yy + = 0xx yy + = 5 xyxx xyyyst =+= yyyxy x yx xst = =# ,st C R Z- 7 - ist+ ix y+ f b 23 ! u u D =f # iuufx y = f D =f $ I $ f D =f by u u D =f #x

14、u yu D =B b 2222xyuuuux xy y = 2yxuu ux xy y = C RZb 24f vxy=+ uxy=+ f $ I $ by iuv+ ?Bf b 25 ! u v f T v u f * u9 v f b $ I $ b I 275=b 26 B f f b ! v u f 5 0xx yyuu+ = 0xx yyvv+ = xyuv= yxuv= b () 2xx xx x x xxuv u v u v uv=+ + () 2yy yy y y yyuv u v u v uv= +# () () 0xx yyuv uv+=B f f b 27 T () i

15、f zuv=+ Bf k 1 i()f z 9 f 2 u v f 3222222 222| ( )| | ( )|4( ) 4 | ( ) |xxfz fzuv fzxy+=+=b 1 i() if zvu= 7 () if zuv=+ Bf # ,uv C RZ 7 ()xyvu= ()yxvu= b# i()f z 9 f b 2 () if zuv=+ Bf i() if zvu= b# u v f b 32222222222|()| |()|()()fz fzuvxyxy +=+ 222222 222222( )2( )4( ) 4 | ( ) |x x y y xx yy xx y

16、yxxuvuvuuu vvvuv fz=+ + +=+=28 22ux y=22yvx y=+ f iuv+ f b 2xux= 2yuy= 2222()xxyvx y=+22222()yx yvx y=+ 2223 22282()()xxxy yvx yxy=+3223 22286()()yyyyvx yxy=+5 2(2)0xx yyuu+=+=23223 223 2228880()()()xx yyxy y yvvxy xy xy+= + =+b - 8 - 29 p / T f u 1 (),u f ax by a b= + 2yufx=b 122, , ,xxx yuafu afu

17、bf= =7 0xx yyuu+ = 5 0f = 12()f cax by c=+b 22234 211, 2 , , ,xxx yyyyyufu ffufufxxxxx= = + = = 7 0xx yyuu+=5 2122120,arctanyy yf ffc cxx x+= + b 30/ Xf pf () if zuv= + 122()(4 )uxyx xyy= + + 222,(2) 0yvfxy= =+ 3 2( 1) , (2) iuxyf= = 4 arctan , 0yvxx= b 12222363, 363xyuxxyyuxxyy=+ =5 2222 2() i363i(

18、363)3(1)xyf z u u x xy y x xy y i z= = + = # 3() (1 ) i,fz iz cc= + 222 22 2222 222 222 2 222i1( ) i i()()()()yxx y xy x y xy zfz v vx yxyxyzzz =+= + = = =+ +# 111() , (2) 0 ()2fz c f fzzz= + = = 5 3 ( ) i 2 2i( 1) 2i( 1 i ) 2i( 1)xyfz u u y x x y z= = = += # 22() i( 1) , (2) i () i( 1)fz z c f fz z

19、= + = = 5 422 22 22i1( ) i iyxxyxyzfz v vx y xyxyzzz=+= + = = =+# () ln ,fz z cc= +b 31 ! sinpxve y= p p P vf i pf () if zuv= + b 2sin ( 1) 0pxxx yyvv e yp+= = 1p = b 1p = H () ,zfz e cc= + 1p = H() ,zfz e cc= + b 32 T (, )uxy u D =f C D =0z B_0|zz r = = c Db k 1 (, )uxy00(, )x y (, )uxy C ( 200 0 0

20、01(, ) ( cos, sin)2ux y ux r y r d =+ 2 (, )uxy00(, )x y (, )uxy00|zz r ( 0200 0 020001(, ) ( cos, sin)rux y ux r y r rd drr =+b 1 ( TP86 - 9 - 20001() ( e)2if zfzRd=+ | L 200 0 001(, ) ( cos, sin)2ux y ux r y r d =+ 2 10 020 0 00 002200 011(cos, sin) 2(,) (,)rrux r y r rddr uxyrdr uxy + = = b 33 T

21、() if zuv=+ u D =) C D =_ |z R= = c Db! z C =Bi 72/zRz= k 2() ()0CCfzfddzzR =vvb y z C =B22| /| /|RzRzR z RRz= #()fz C # =bCauchy 2() ()0CCfzfddzzR =vvb 34 Os T5 33T 22211 1( )()() ( )2i 2i ( )( )CCzRzff zfddzR z zR z =+ = vv C |z R= |. Os T 1()()2iCff zdz=v 7 33 5T2()0CzfdzR=v#| TMhb 35 T 7iie, eR

22、zr = 222/i.()( )()( )R2cos()dd dzR z z z Rr r = +i 345T 22 i201()(e)()22cosRrfRf zdRRr r=+. | L 22201( )(cos,sin)(, ) (cos , sin )22 )RruR Ruxy ur r dRRr r =+s Poissonsb YV TBf B = V V Ub 2iRRRRe=#22/.()( ) ()( )()( )dddRzR z z zzz = iidiRedidRe=22()( ) 2cos()zzRRr r = +# - 10 - 22/i()( ) 2cos()ddzz

23、RRr r = +b 3452i22 21( )() 1 ( )(e)()2i ( )( ) 2 2 cos( )CCRzzf RrfR dfz dzR z R Rr r = +vvb 36 ! ()f z e wL C =# C O n . 1 k Os T 1()()2innCff zdz=v. 2 ! M |()|f C Kv L C d z CK ks T3.1.10 1 T T 1/|()|2nLfz Md. 3 7 n + 2 T |K |()|f zM bTV u = f Kv ? uH | Kv b 1 Os T| f ()f z ()nf z b 2 11()|()|()|22nnn nCfLf zfz ds Mzd = v# 1/ 1/|()|22nnnLLfz M Mdd=b 3 2 T |Kn + b

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报