ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:448.50KB ,
资源ID:10812837      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10812837.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(线性变换的定义.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

线性变换的定义.ppt

1、主要内容,引入,第一节 线性变换的定义,定义,举例,性质,二、定义,定义 1 线性空间 V 的一个变换 A 称为线性,变换,如果对于 V 中任意的元素 , 和数域 P 中,任意数 k ,都有,A( + ) = A( ) + A( ) ,A( k ) = k A( ) .,以后我们一般用花体拉丁字母 A , B , 代表,V 的变换, A() 或 A 代表元素 在变换 A下,的像.,定义中的等式所表示的性质,有时也说成线性,变换保持向量的加法与数量乘法.,下面我们来看几个简单的例子,它们表明线性,变换这个概念是有丰富的内容的.,三、举例,例 1 平面上的向量构成实数域上的二维线性,空间. 把平面

2、围绕坐标原点按反时针方向旋转 角,就是一个线性变换,我们用 R 表示.,如果平面上,一个向量 在直角坐标系下的坐标是 ( x , y ), 那么,像 R ( ) 的坐标,即 旋转 角之后的坐标,( x , y ) 是按照公式,来计算的.,性变换.,如图 7 - 1 所示.,同样地,空间中绕轴的旋转也是一个线,例 2 设 是几何空间中一固定的非零向量,,把每个向量 变到它在 上的内射影的变换也是,一个线性变换,以 表示它.,这里 ( , ), ( , ),表示内积.,几何意,义如图 7 - 2 所示.,用公式表示就是,例 3 线性空间 V 中的恒等变换或称单位,变换 E ,即,A ( ) = (

3、 V) ,以及零变换 0 ,即,0 ( ) = 0 ( V),都是线性变换.,例 4 设 V 是数域 P 上的线性空间,k 是 P 中,某个数,定义 V 的变换如下:, k , V .,不难证明,这是一个线性变换,称为由数 k 决定的,数乘变换, 可用 K 表示.,显然,当 k = 1 时,我,们便得恒等变换,当 k = 0 时,便得零变换.,数组成实数域上一线性空间,以 C( a , b ) 代表.,例 5 在线性空间 P x 或者 P x n 中,求微,商是一个线性变换.,这个变换通常用 D 代表,即,D ( f (x) ) = f (x) .,例 6 定义在闭区间 a , b 上的全体连

4、续函,在,这个空间中,变换,I ( f (x) ) =,是一线性变换.,四、性质,线性变换有以下三个简单性质:,性质 1 设 A 是 V 的线性变换,则,A( 0 ) = 0,A( - ) = - A( ) .,性质 2 线性变换保持线性组合与线性关系式,不变.,换句话说,如果 是 1 , 2 , , r 的线性,组合:, = k11 + k22 + + krr ,那么经过线性变换 A 之后,,A ( ) 是 A ( 1 ),A ( 2 ) , , A ( r ) 同样的线性组合:,又如果 1 , 2 , , r 之间有关系式,k11 + k22 + + krr = 0 ,,A ( ) = k

5、1A ( 1 ) + k2A ( 2 ) + + krA ( r ) .,那么它们的像之间也有同样的关系,以上两点,根据定义不难验证,由此即得,性质 3 线性变换把线性相关的向量组变成,线性相关的向量组.,但应该注意,性质 3 的逆是不对的,线性变换,可能把线性无关的向量组也变成线性相关的向量,组.,例如零变换就是这样.,k1A ( 1 ) + k2A ( 2 ) + + krA ( r ) = 0 .,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想

6、结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容

7、已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报