ImageVerifierCode 换一换
格式:DOC , 页数:39 ,大小:2.05MB ,
资源ID:10549372      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10549372.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学一轮教案(圆锥曲线经典例题及总结).doc)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高考数学一轮教案(圆锥曲线经典例题及总结).doc

1、由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点 F ,F 的距离的和等于常数 ,122a且此常数 一定要大于 ,当常数等于 时,轨迹是线段 F F ,当常数小于 时,无2a21F21F1F轨迹;双曲线中,与两定点 F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F Faa1|,定义中的“绝对值”与 |F F |不可忽视。若 |F F |,则轨迹是以 F ,F 为端点的2 a12122两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双

2、曲线的一支。122.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在 轴上时 ( ) ,焦点在 轴上时 1(x12bya0ay2bxa) 。方程 表示椭圆的充要条件是什么?( ABC0,且 A,B ,C 同号,0ab2AByCAB ) 。(2)双曲线:焦点在 轴上: =1,焦点在 轴上: 1( ) 。方x2byay2bxa0,程 表示双曲线的充要条件是什么?(ABC 0,且 A,B 异号) 。xy(3)抛物线:开口向右时 ,开口向左时 ,开口向上时2()px2()p,开口向下时 。2(0)py3.圆锥曲线焦点位置的判断(首先化成标准方程

3、,然后再判断):(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。x2y(2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。提醒:在椭圆中, 最大, ,在双曲线中, 最大, 。a22bcc22ab4.圆锥曲线的几何性质:(1)椭圆(以 ( )为例):范围 : ;焦点:12yx0,xy两个焦点 ;对称性 :两条对称轴 ,一个对称中心(0,0) ,四个顶点(,0)c,xy,其中长轴长为 2 ,短轴长为 2 ;准线:两条准线 ; 离心率:,abab2ac,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。e1ee(2)

4、双曲线(以 ( )为例): 范围: 或 ;焦点:2xyab0,xa,yR两个焦点 ;对称性 :两条对称轴 ,一个对称中心(0,0) ,两个顶点 ,其(,0)cxy(,0)a中实轴长为 2 ,虚轴长为 2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费为 ;准线:两条准线 ; 离心率: ,双曲线 ,等轴双2,0xyk2axccea1e曲线 , 越小,开口越小, 越大,开口越大;两条渐近线: 。ee byx(3)抛物线(以 为例):范围: ;焦点:一个焦点 ,其中2()ypx0,xyR(,0)2p的几

5、何意义是:焦点到准线的距离;对称性:一条对称轴 ,没有对称中心,只有一个顶点p (0,0) ;准线:一条准线 ; 离心率: ,抛物线 。2cea1e5、点 和椭圆 ( )的关系:(1)点 在椭圆外0(,)Pxy2byax0a0(,)Pxy;(2)点 在椭圆上 1;(3)点 在椭圆内201ab0(,)2byx,2xy6直线与圆锥曲线的位置关系:(1)相交: 直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不00一定有 ,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故 是直0线与双曲线相交的充分条件,但不是必要条件; 直线与抛物线相交,但直线与抛物线相交不一定有 ,当直线与

6、抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故 也仅是直线与抛物线相交的充分条件,但不是必要条件。(2)相切: 直线与椭圆相切; 直线与双曲线相切; 直线与抛物线00相切;(3)相离: 直线与椭圆相离; 直线与双曲线相离; 直线与抛物线0相离。提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时 ,直线与抛物线相交,也只有一个交点;(2)过双曲线 1 外一点 的直线与双曲线只2byax0(,)Pxy有一个公共点的情况如下:P 点在两条渐近线之间且不含双曲线的区域内

7、时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题: ,当 即 为短轴端点时, 的最大值为 bc;对于双曲线 。20tan|Sbcy0|bPmaxS2tan2bS由莲山课件提供 http:/ 资源全部免

8、费由莲山课件提供 http:/ 资源全部免费如 (1)短轴长为 ,58、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设 AB 为焦点弦, M 为准线与 x 轴的交点,则AMFBMF;(3)设 AB 为焦点弦,A、B 在准线上的射影分别为 A ,B ,若 P 为 A B 的中点,则 PAPB;(4)若 AO 的延长线交准线于 C,则 BC11平行于 x 轴,反之,若过 B 点平行于 x 轴的直线交准线于 C 点,则 A,O,C 三点共线。 9、弦长公式:若直线 与圆锥曲线相交于两点 A、B ,且 分别为 A、B 的横坐标,则ykb12,x ,若 分别为

9、 A、B 的纵坐标,则 ,若弦 AB 所AB21kx12, 21yk在直线方程设为 ,则 。特别地,焦点弦(过焦点的弦):焦点弦的y21ky弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。抛物线:在双曲线 中,以 为中点的弦所在直线的斜率 k= ;在抛物线21xyab0(,)Pxy 02yaxb中,以 为中点的弦所在直线的斜率 k= 。2(0)yp, p提醒:因为 是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验 !11了解下列结论(1)双曲线 的渐近线方程为 ;12byax02byax(2)以 为渐近线(即与双曲线 共

10、渐近线)的双曲线方程为 为1(2byax参数, 0)。(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为 ;21mxny由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为 ,焦准距(焦点到相应准线的2ba距离)为 ,抛物线的通径为 ,焦准距为 ; 2bc2pp(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线 的焦点弦为 AB, ,则2(0)yx12(,)(,)AxyB ;1|ABxp2211,4yp(7)若 OA、OB 是过抛物线 顶点 O 的两条互相垂直的弦,则直线 AB 恒经过定点(

11、)x(2,0)p12、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量 或 ;ku,1nm,(2)给出 与 相交,等于已知 过 的中点;OBABA(3)给出 ,等于已知 是 的中点;0PNMPMN(4)给出 ,等于已知 与 的中点三点共线;Q,(5) 给出以下情形之一: ;存在实数 ;若存在实数C/,ABC且,等于已知 三点共线.,1,C且 ,(6) 给出 ,等于已知 ,即 是直角,给出 ,等于已0BABA0mM知 是钝角, 给出 ,等于已知 是锐角,m(8)给出 ,等于已知 是 的平分线/MP(9)在平行四边形 中,给出 ,等于已知 是菱形;ABCD0)()(ADBAABC

12、D(10) 在平行四边形 中,给出 ,等于已知 是矩形;|(11)在 中,给出 ,等于已知 是 的外心(三角形外接圆的22OC圆心,三角形的外心是三角形三边垂直平分线的交点) ;(12) 在 中,给出 ,等于已知 是 的重心(三角形的重心是0三角形三条中线的交点) ;(13)在 中,给出 ,等于已知 是 的垂心(三角ABCAB OABC形的垂心是三角形三条高的交点) ;(14)在 中,给出 等于已知 通过 的内OAP()|C)(RP心;(15)在 中,给出 等于已知 是 的内心(三角形内AB,0cBba AB切圆的圆心,三角形的内心是三角形三条角平分线的交点) ;由莲山课件提供 http:/

13、资源全部免费由莲山课件提供 http:/ 资源全部免费FAPHBQ (16) 在 中,给出 ,等于已知 是 中 边的中线; ABC12DABCADBC(3)已知 A,B 为抛物线 x2=2py(p0)上异于原点的两点, ,点 C 坐标为(0,2p)O(1)求证:A,B,C 三点共线; (2)若 ( )且 试求点 M 的轨迹方程。MR0O(1)证明:设 ,由 得221(,)(,)ABpAB,又221120,4xxp2211(,),(,)xxCpAp, ,即 A,B,C 三点共线。21 1()(0p /(2)由(1)知直线 AB 过定点 C,又由 及 ( )知 OMAB,0OMBBMR垂足为 M,

14、所以点 M 的轨迹为以 OC 为直径的圆,除去坐标原点。即点 M 的轨迹方程为 x2+(y-p)2=p2(x0,y0)。13.圆锥曲线中线段的最值问题: 例 1、(1)抛物线 C:y2=4x 上一点 P 到点 A(3,4 )与到准线的距离和最小 ,则点 P 的坐标为2_ (2)抛物线 C: y2=4x 上一点 Q 到点 B(4,1)与到焦点 F 的距离和最小,则点 Q 的坐标为 。 分析:(1)A 在抛物线外,如图,连 PF,则 ,因而易发PH现,当 A、P、 F 三点共线时,距离和最小。(2)B 在抛物线内,如图,作 QRl 交于 R,则当 B、Q、R 三点共线时,距离和最小。 解:(1)

15、(2, ) (2) ( )1,41、已知椭圆 C1的方程为 ,双曲线 C2的左、右焦点分别为 C1的左、右顶点,而 C2的左、14yx右顶点分别是 C1的左、右焦点。(1) 求双曲线 C2的方程;(2) 若直线 l: 与椭圆 C1及双曲线 C2恒有两个不同的交点,且 l 与 C2的两个交点kxyA 和 B 满足 (其中 O 为原点),求 k 的取值范围。6由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费解:()设双曲线 C2的方程为 ,则12byax .1,314222 bcaa得再 由故 C2的方程为 (II)将1.3xy.0428)4(422 kxkkx

16、y得代 入由直线 l 与椭圆 C1恒有两个不同的交点得即 ,)1(6)(6)8( 2221 k 21.由直线 l 与双曲线 C2恒有两个0963322 kxkyxxy得代 入将不同的交点 A,B 得 22222210, 1.3(6)(1)().k k 即 且229(,), ,31,()()ABABABABABBkxyxxkOyk设 则由 得 而22221)96(3137.1Axxkk解此不等式得 223756,0.13kk于 是 即 221.53k或由、得 .153422或故 k 的取值范围为 11(,)(,)(,)(,)35在平面直角坐标系 xOy 中,已知点 A(0,-1),B 点在直线

17、y = -3 上,M 点满足 MB/OA, MAAB = MBBA,M 点的轨迹为曲线 C。由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费()求 C 的方程;()P 为 C 上的动点,l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。()设 M(x,y),由已知得 B(x,-3),A(0,-1).所以 =(-x,-1-y), =(0,-3-y), =(x,-2).MABAB再由愿意得知( + ) =0,即(-x,-4-2y) (x,-2)=0.MAB所以曲线 C 的方程式为 y= x -2. ()设 P(x ,y )为曲线 C:y= x -2

18、 上一点,因为 y = x,142014212所以 的斜率为 x 因此直线 的方程为 ,即 。l20l 01(2yx200yx则 O 点到 的距离 .又 ,所以l20|4ydx0 20202014(),4dxx当 =0 时取等号,所以 O 点到 距离的最小值为 2.20xl设双曲线21yab(a0,b0)的渐近线与抛物线 y=x2 +1 相切,则该双曲线的离心率等于( )设双曲线 2x的一条渐近线,则双曲线的离心率为( ). 过椭圆 21yab( 0)的左焦点 1F作 x轴的垂线交椭圆于点 P, 2F为右焦点,若1260FP,则椭圆的离心率为已知双曲线 )0(12byx的左、右焦点分别是 1、

19、 2,其一条渐近线方程为 xy,点),3(0P在双曲线上.则 1PF 2( )0已知直线 20ykx与抛物线 2:8Cyx相交于 AB、 两点, F为 C的焦点,若|FAB,则 ( )已知直线 1:4360lxy和直线 2:1lx,抛物线 24yx上一动点 P到直线 1l和直线 2l的距离由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费之和的最小值是( )设已知抛物线 C 的顶点在坐标原点,焦点为 F(1,0),直线 l 与抛物线 C 相交于 A,B 两点。若 AB 的中点为(2,2) ,则直线 l 的方程为 _.椭圆219xy的焦点为 12,F,点 P 在

20、椭圆上,若 1|4P,则 2|F ; 12FP的大小为 .过抛物线 2(0)ypx的焦点 F 作倾斜角为 45的直线交抛物线于 A、B 两点,若线段 AB 的长为8,则 _ 【解析】设切点 0(,)P,则切线的斜率为 0|2xy.由题意有 02yx又 201解得: 2 201,1()5bbxeaa双曲线 2by的一条渐近线为 xy,由方程组 21byxa,消去 y,得 210bxa有唯一解,所以= 2()40a,所以 a,22()5cabea由渐近线方程为 xy知双曲线是等轴双曲线, 双曲线方程是 2yx,于是两焦点坐标分别是(2,0)和(2,0) ,且 )1,3(P或 ),(.不妨去 )1,

21、3(P,则1F, ,2F. 2 01)3()1,3)(,( 【解析】设抛物线 2:8Cyx的准线为 :2lx直线 0ykx恒过定点 P,0 .如图过 AB、 分 别作由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费AMl于 , BNl于 , 由 |2|FAB,则 |2|MN,点 B 为 AP 的中点.连结 OB,则1|2OF,| 点 的横坐标为 1, 故点 的坐标为02(1,)1()3k, 故选 D21121121212124,4yxAxyBxyxy则 有 ,两 式 相 减 得 , ,直 线 l的 方 程 为 -=x,即一、椭 圆1. 点 P 处的切线 PT

22、 平分PF 1F2在点 P 处的外角.2. PT 平分PF 1F2在点 P 处的外角,则焦点在直线 PT 上的射影 H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦 PQ 为直径的圆必与对应准线相离.4. 以焦点半径 PF1为直径的圆必与以长轴为直径的圆内切.5. 若 在椭圆 上,则过 的椭圆的切线方程是 .0(,)Pxy21xyab0P021xyab6. 若 在椭圆 外 ,则过 Po 作椭圆的两条切线切点为 P1、P 2,则切点弦 P1P2的,2直线方程是 .07. 椭圆 (ab0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 ,21xya 12F则椭圆的焦点角

23、形的面积为 .12tanFPSb8. 椭圆 (ab0)的焦半径公式:21xy由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费, ( , ).10|MFaex20|aex1)Fc2(,0)0,)Mxy9. 设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相应于焦点 F 的椭圆准线于 M、N 两点,则 MFNF.10. 过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A 2为椭圆长轴上的顶点,A 1P 和 A2Q 交于点M,A 2P 和 A1Q 交于点 N,则 MFNF.11. AB 是椭圆 的不

24、平行于对称轴的弦,M 为 AB 的中点,则 ,2xyab),(0yx 2OMABbka即 。02KAB12. 若 在椭圆 内,则被 Po 所平分的中点弦的方程是 .0(,)Pxy21xyab 2002xyxyab13. 若 在椭圆 内,则过 Po 的弦中点的轨迹方程是 .0,2 022二、双曲线1. 点 P 处的切线 PT 平分PF 1F2在点 P 处的内角.2. PT 平分PF 1F2在点 P 处的内角,则焦点在直线 PT 上的射影 H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦 PQ 为直径的圆必与对应准线相交.4. 以焦点半径 PF1为直径的圆必与以实轴为直径的圆相切

25、.(内切:P 在右支;外切:P 在左支)5. 若 在双曲线 (a0,b0)上,则过 的双曲线的切线方程是0(,)xy21xyb0.21ab6. 若 在双曲线 (a0,b0)外 ,则过 Po 作双曲线的两条切线切点为0(,)Pxy2xyP1、P 2,则切点弦 P1P2的直线方程是 .21xyb7. 双曲线 (a0,bo)的左右焦点分别为 F1,F 2,点 P 为双曲线上任意一点b,则双曲线的焦点角形的面积为 .12F12tPSco8. 双曲线 (a0,bo)的焦半径公式:( , 1xy (0)2(,)由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费当 在右支上

26、时, , .0(,)Mxy10|MFexa20|Fexa当 在左支上时, ,9. 设过双曲线焦点 F 作直线与双曲线相交 P、Q 两点,A 为双曲线长轴上一个顶点,连结 AP 和 AQ 分别交相应于焦点 F 的双曲线准线于 M、N 两点,则 MFNF.10. 过双曲线一个焦点 F 的直线与双曲线交于两点 P、Q, A1、A 2为双曲线实轴上的顶点,A 1P 和A2Q 交于点 M,A 2P 和 A1Q 交于点 N,则 MFNF.11. AB 是双曲线 (a0,b0)的不平行于对称轴的弦,M 为 AB 的中点,则xyb ),(0yx,即 。02KABOM 02yxbAB12. 若 在双曲线 (a0

27、,b0)内,则被 Po 所平分的中点弦的方程是0(,)Pxy21x.202ab13. 若 在双曲线 (a0,b0)内,则过 Po 的弦中点的轨迹方程是0(,)xy21xyb.202ab椭圆与双曲线的对偶性质-(会推导的经典结论)椭 圆1. 椭圆 (abo)的两个顶点为 , ,与 y 轴平行的直线交椭圆21xy1(0)Aa2()于 P1、 P2时 A1P1与 A2P2交点的轨迹方程是 .2xyb2. 过椭圆 (a0, b0)上任一点 任意作两条倾斜角互补的直线交椭圆xyab0(,)于 B,C 两点,则直线 BC 有定向且 (常数).20BCxkay3. 若 P 为椭圆 (ab0)上异于长轴端点的

28、任一点,F 1, F 2是焦点, 21xy, ,则 .12F21Ftant2co4. 设椭圆 (ab0)的两个焦点为 F1、F 2,P(异于长轴端点)为椭圆上任意一点,2xy由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费在PF 1F2中,记 , , ,则有 .12P12F12Psincea5. 若椭圆 (ab0)的左、右焦点分别为 F1、F 2,左准线为 L,则当 0e2xy时,可在椭圆上求一点 P,使得 PF1是 P 到对应准线距离 d 与 PF2的比例中项.16. P 为椭圆 (ab0)上任一点,F 1,F2为二焦点,A 为椭圆内一定点,则2xy,当且

29、仅当 三点共线时,等号成立.211|2|aAFF2,7. 椭圆 与直线 有公共点的充要条件是002()()xyb0xByC.222Bx8. 已知椭圆 (ab0) ,O 为坐标原点,P、Q 为椭圆上两动点,且 .1 OPQ(1) ;(2)|OP| 2+|OQ|2的最大值为 ;(3) 的最22|OPQ24abS小值是 .ab9. 过椭圆 (ab0)的右焦点 F 作直线交该椭圆右支于 M,N 两点,弦 MN 的垂直21xy平分线交 x 轴于 P,则 .|2eMN10. 已知椭圆 ( ab0) ,A、B、是椭圆上的两点,线段 AB 的垂直平分线与 x 轴21y相交于点 , 则 .0()x220abx1

30、1. 设 P 点是椭圆 ( ab0)上异于长轴端点的任一点,F 1、F 2为其焦点记21yab,则(1) .(2) .12F212|cosPF12tanPFSb12. 设 A、B 是椭圆 ( ab0)的长轴两端点,P 是椭圆上的一点, , 2xya PAB由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费, ,c、e 分别是椭圆的半焦距离心率,则有(1) .PBA 2|cos|abPA(2) .(3) .2tan12cotPABabS13. 已知椭圆 ( ab0)的右准线 与 x 轴相交于点 ,过椭圆右焦点 的直线2xylEF与椭圆相交于 A、B 两点,点 在

31、右准线 上,且 轴,则直线 AC 经过线段 EF 的中点.ClC14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数 e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比 e.18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线 (a0,b0)的两

32、个顶点为 , ,与 y 轴平行的直21xyb1(0)Aa2()线交双曲线于 P1、 P2时 A1P1与 A2P2交点的轨迹方程是 .xyb2. 过双曲线 (a0,bo)上任一点 任意作两条倾斜角互补的直线xyb0(,)交双曲线于 B,C 两点,则直线 BC 有定向且 (常数).20BCxkay3. 若 P 为双曲线 (a0,b0)右(或左)支上除顶点外的任一点,F 1, F 2是21xyb由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费焦点, , ,则 (或 )12PF21Ftant2ccotant2co.4. 设双曲线 (a0,b0)的两个焦点为 F1、F

33、 2,P(异于长轴端点)为双曲线2xyb上任意一点,在PF 1F2中,记 , , ,则有12P12P12FP.sin()cea5. 若双曲线 (a0,b0)的左、右焦点分别为 F1、F 2,左准线为 L,则当21xyb1e 时,可在双曲线上求一点 P,使得 PF1是 P 到对应准线距离 d 与 PF2的比例中项.6. P 为双曲线 (a0,b0)上任一点,F 1,F2为二焦点,A 为双曲线内一定点,21xyb则 ,当且仅当 三点共线且 和 在 y 轴同侧时,21|AFPF2,P2,F等号成立.7. 双曲线 (a0,b0)与直线 有公共点的充要条件是2xyb0AxByC.2AaBC8. 已知双曲

34、线 (ba 0) ,O 为坐标原点,P、Q 为双曲线上两动点,且1.OPQ(1) ;(2)|OP| 2+|OQ|2的最小值为 ;(3) 的最小22|24abOPQS值是 .ab9. 过双曲线 (a0,b0)的右焦点 F 作直线交该双曲线的右支于 M,N 两点,21xy弦 MN 的垂直平分线交 x 轴于 P,则 .|2eMN由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费10. 已知双曲线 (a0,b0),A、B 是双曲线上的两点,线段 AB 的垂直平分线21xyb与 x 轴相交于点 , 则 或 .0()P2bxa20abx11. 设 P 点是双曲线 (a0,

35、b0)上异于实轴端点的任一点,F 1、F 2为其焦点记21xyb,则(1) .(2) .12F22|cosbF12cotPFSb12. 设 A、B 是双曲线 (a0,b0)的长轴两端点,P 是双曲线上的一点,21xyb, , ,c、e 分别是双曲线的半焦距离心率,则有(1)PAB.2|cos|a(2) .(3) .2tn1e2cotPABabS13. 已知双曲线 (a0,b0)的右准线 与 x 轴相交于点 ,过双曲线右焦点2xyblE的直线与双曲线相交于 A、B 两点,点 在右准线 上,且 轴,则直线 AC 经FCBCx过线段 EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴

36、为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数 e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比 e.18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费其他常用公式:1、连结圆锥曲线上两个点的线

37、段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式: 21122ABkxyk2、直线的一般式方程:任何直线均可写成 (A,B 不同时为 0)的形式。3、知直线横截距 ,常设其方程为 (它不适用于斜率为 0 的直线)与直线 垂直的直线可表示为 。4、两平行线 间的距离为 。5、若直线 与直线 平行则 (斜率)且 (在 轴上截距) (充要条件)6、圆的一般方程: ,特别提醒:只有当时,方程 才表示圆心为 ,半径为的圆。二元二次方程 表示圆的充要条件是且 且 。7、圆的参数方程: ( 为参数),其中圆心为 ,半径为 。圆的参数方程的主要应用是三角换元: ;8、 为直径端点的圆方程切

38、线长:过圆 ( )外一点 所引圆的切线的由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费长为 ( )9、弦长问题:圆的弦长的计算:常用弦心距 ,弦长一半 及圆的半径 所构成的直角三角形来解: ;过两圆 、 交点的圆(公共弦)系为,当 时,方程 为两圆公共弦所在直线方程.。攻克圆锥曲线解答题的策略摘要:为帮助高三学生学好圆锥曲线解答题,提高成 绩,战胜高考,可从四个方面着手:知识储备、方法储备、思维训练、强化训练。关键词:知识储备 方法储备 思维训练 强化训练第一、知识储备:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式

39、。(2)与直线相关的重要内容倾斜角与斜率 tan,0,)k点到直线的距离 夹角公式:2AxByCd21tank(3)弦长公式直线 上两点 间的距离:ykxb12(,)(,)AxyB21ABkx由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费或2211()4kxx122AByk(4)两条直线的位置关系 =-1 121lk212121/bkl且2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:21(0,)xymn且距离式方程: 22)(cxcya参数方程: os,inxayb(2)、双曲线的方程的形式有两种标准方程:21(0)xymn距

40、离式方程: 22|)(|cxcya(3)、三种圆锥曲线的通径你记得吗?22bbpaa椭 圆 : ; 双 曲 线 : ; 抛 物 线 :(4)、圆锥曲线的定义你记清楚了吗?如:已知 是椭圆 的两个焦点,平面内一个动点 M 满足 则21F、 1342yx 21F动点 M 的轨迹是( )A、双曲 线;B、双曲线的一支;C、两条射线;D、一条射线由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费(5)、焦点三角形面积公式: 12tanFPPb在 椭 圆 上 时 , S12co在 双 曲 线 上 时 ,(其中 )22112 12|4,cos,|cos|F FP (6)、

41、记住焦半径公式:(1) ,可简记为0 0;xaexaey椭 圆 焦 点 在 轴 上 时 为 焦 点 在 y轴 上 时 为“左加右减,上加下减 ”。(2) 0|xe双 曲 线 焦 点 在 轴 上 时 为(3) 1 1|,|22ppxy抛 物 线 焦 点 在 轴 上 时 为 焦 点 在 y轴 上 时 为(6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题)设 、 , 为椭圆 的弦 中点则有1,yxA2,yxBbaM, 1342yxAB, ;两式相减得3421134202121y=21212121 yyxxABkba432、联立消元法:你会解直线与圆锥曲线的位置关系一类

42、的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式 ,以及根与系数的关系,代入弦长公式,设曲线上的两点 ,0 12(,)(,)AxyB将这两点代入曲线方程得到 两个式子,然后 - ,整体消元 ,若有两个字母未知12 12由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费数,则要找到它们的联系,消去一个,比如直 线过焦点,则可以利用三点 A、B、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为 ,就意味着 k 存在。ykxb例 1、已知三角

43、形 ABC 的三个顶点均在椭圆 上,且点 A 是椭圆短轴的一个端点(点 A80542yx在 y 轴正半轴上).(1)若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程;(2)若角 A 为 ,AD 垂直 BC 于 D,试求点 D 的轨迹方程.09分析:第一问抓住“重心” ,利用点差法及重心坐标公式可求出中点弦 BC 的斜率,从而写出直线 BC的方程。第二问抓住角 A 为 可得出 ABAC,从而得 ,然后利0 016)(14221 yyx用联立消元法及交轨法求出点 D 的轨迹方程;解:(1)设 B( , ),C( , ),BC 中点为( ),F(2,0)则有1xy2y0,yx 1620

44、,12yxyx两式作差有 (1)16)0)( 222121 450kF(2,0)为三角形重心,所以由 ,得 ,由 得 ,代入(1)321x3021y20y得 56k直线 BC 的方程为 0285yx2)由 ABAC 得 (2)016)(14221 y设直线 BC 方程为 ,得85,xbkxy代 入 08510)54(22bkxk,221540x214k代入(2)式得2121 580,8byky由莲山课件提供 http:/ 资源全部免费由莲山课件提供 http:/ 资源全部免费,解得 或05416329kb)(4舍b94直线过定点(0, ,设 D(x,y) ,则 ,即)91xy 0163292yxy所以所求点 D 的轨迹方程是 。)4(920)16(2 yx4、设而不求法例 2、如图,已知梯形 ABCD 中 ,点 E 分有向线段 所成的比CDAB2AC为 ,双曲线过 C、D、E 三点,且以 A、B 为焦点当 时,求双曲线 432离心率 的取值范围。e分

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报