ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:566.91KB ,
资源ID:10396035      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10396035.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《完全平方公式PPT课件》.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

《完全平方公式PPT课件》.ppt

1、,乘法公式 完全平方公式,整式的乘除与因式分解,回顾旧知平方差公式( a + b )( a b )=a2 - b2,那么(a+b)(a+b)和(a-b)(a-b)是否 也能用一个公式来表示呢?,完 全 平 方 公 式,一块边长为a米的正方形实验田,,图16,因需要将其边长增加 b 米。,形成四块实验田,以种植不同的新品种(如图16).,用不同的形式表示实验田的总面积, 并进行比较.,(a+b) ;,2,a2+,ab+,ab+,b2.,(a+b)2=,a2+,ab,+,b2.,2,探究,计算下列各式,你能发现什么?(p+1)2 =(p+1)(p+1)=(m+2)2=(p-1)2 =(p-1)(p

2、-1)=(m-2)2 =,p2+2p+1,(m+2)(m+2)=m2+4m+4,p2-2p+1,(m-2)(m-2)=m2- 4m+4,m2- 4m+4=m2-2m2+22,猜想 (a+b)2=(a -b)2=,a2+2ab+b2,a2 - 2ab+b2,完全平方公式,(1) 你能用多项式的乘法法则来说明它成立吗?,(a+b)2=a2+2ab+b2 ;,(a+b),(a+b),=a2+ab+,ab+b2,=a2+2ab+,b2;,(2),a2 2ab+b2.,小颖写出了如下的算式:,(ab)2=,a+(b)2,她是怎么想的?,利用两数和的 完全平方公式,推证公式,= 2 + 2 + 2,a,a

3、,(b),(b),=,a2,2ab,b2.,+,你能继续做下去吗?,的证明,(a+b),a,b,完全平方和公式:,完全平方公式 的图形理解,(a-b),a,b,完全平方差公式:,完全平方公式 的图形理解,初 识 完全平方 公式,(a+b)2 = a2+2ab+b2 . (ab)2 = a2 2ab+b2 .,a2,ab,b2,结构特征:,左边是,的平方;,二项式,右边是,(两数和 ),(差),(a+b)2=,a2,ab,b(ab),=,a22ab+b2 .,=,(ab)2,ab,ab,b(ab),(ab)2,a2+2ab+b2,两数的平方和,加上,(减去),这两数乘积的两倍.,(ab)2 =

4、a22ab+b2,语言表述:,两数和 的平方,等于 这两数的平方和,加上 这两数乘积的两倍.,(差),(减去),公式特点:,4、公式中的字母a,b可以表示数,单项式和多项式。,(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2,1、积为二次三项式;,2、积中两项为两数的平方和;,3、另一项是两数积的2倍,且与乘式中间的符号相同。,首平方,尾平方,积的2倍在中央,例题解析,例题,例1 利用完全平方公式计算: (1) (2x3)2 ; (2) (4x+5y)2 ; (3) (mna)2,使用完全平方公式与平方差公式的使用一样,先把要计算的式子与完全平方公式对照,明确哪个是

5、 a , 哪个是 b.,第一数,2x,4x2,2x,的平方,( )2,减去,2x,第一数,与第二数,2x,3,乘积,的2倍,2,加上,+,第二数,3,的平方.,2,=,12x,+,9 ;,3,1.下面各式的计算错在哪里?应怎样改正?,. (a+b)2=a2+b2(2). (a-b)2=a2-b2, 错 练 习,指出下列各式中的错误,并加以改正: (1) (2a1)22a22a+1; (2) (2a+

6、1)24a2 +1; (3) (a1)2a22a1.,解: (1),第一数被平方时, 未添括号;,第一数与第二数乘积的2倍 少乘了一个2 ;,应改为: (2a1)2 (2a)222a1+1;,(2) 少了第一数与第二数乘积的2倍 (丢了一项);,应改为: (2a+1)2 (2a)2+22a1 +1;,(3) 第一数平方未添括号,第一数与第二数乘积的2倍 错了符号;,第二数的平方 这一项错了符号;,应改为: (a1)2(a)22(a )1+12;,拓 展 练 习,下列等式是否成立? 说明理由 (1) (4a+1)2=(14a)2; (2) (4a1)2=(4a+1)2; (3) (4a1)(14

7、a)(4a1)(4a1)(4a1)2; (4) (4a1)(14a)(4a1)(4a+1).,(1) 由加法交换律 4a+ll4a。,成立,理由:,(2) 4a1(4a+1),,成立,(4a1)2(4a+1)2(4a+1)2.,(3) (14a)(1+4a),不成立,即 (14a)(4a1),(4a1),, (4a1)(14a)(4a1)(4a1),(4a1)(4a1)(4a1)2。,不成立,(4) 右边应为:,(4a1)(4a+1)。,随堂练习,(1) ( x 2y)2 ; (2) (2xy+ x )2 ;,2、运用完全平方公式计算:,(-2x+5)2(n +1)2 n2.,例2:运用完全平

8、方公式计算:,(1) 1022 (2) 992,解: (1) 1022=(100+2)2=1002+21002+22=10000+400+4=10404,(2) 992=(100-1)2=1002-21001+12=10000-200+1=9801,思考,(1) (a+b)2与(-a-b)2相等吗?,(2) (a-b)2与(b-a)2相等吗?,(3) (a-b)2与a2-b2相等吗?,本节课你的收获是什么?,小结,本节课你学到了什么?,注意完全平方公式和平方差公式不同:,形式不同,结果不同:,完全平方公式的结果 是三项,即 (a b)2a2 2ab+b2;,平方差公式的结果 是两项,即 (a+b)(ab)a2b2.,有时需要进行变形,使变形后的式子符合应用完全平方公式的条件,即为“两数和(或差)的平方”,然后应用公式计算.,在解题过程中要准确确定a和b、对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不少乘2;第一(二)数是乘积被平方时要注意添括号, 是运用完全平方公式进行多项式乘法的关键,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报