ImageVerifierCode 换一换
格式:PPT , 页数:37 ,大小:2.21MB ,
资源ID:10350637      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10350637.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(常微分方程(王高雄)第三版 1.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

常微分方程(王高雄)第三版 1.ppt

1、1.2 基本概念,定义1: 联系自变量、未知函数及未知函数导数(或微分)的关系式称为微分方程.,例1:下列关系式都是微分方程,一、常微分方程与偏微分方程,如果在一个微分方程中,自变量的个数只有一个,则这样的微分方程称为常微分方程.,都是常微分方程,1.常微分方程,如,如果在一个微分方程中,自变量的个数为两个或两个以上,称为偏微分方程.,注: 本课程主要研究常微分方程. 同时把常微分方程简称为微分方程或方程.,2.偏微分方程,如,都是偏微分方程.,定义2:微分方程中出现的未知函数的最高阶导数或微分的阶数称为微分方程的阶数.,是一阶微分方程;,是二阶微分方程;,是四阶微分方程.,二、微分方程的阶,

2、如:,n阶微分方程的一般形式为,是线性微分方程.,三 线性和非线性,如,1.如果方程,是非线性微分方程.,如,2.n阶线性微分方程的一般形式,不是线性方程的方程称为非线性方程,四 微分方程的解,定义4,例2,证明:,1 显式解与隐式解,相应定义4所定义的解为方程的一个显式解.,隐式解.,注:显式解与隐式解统称为微分方程的解.,例如,有显式解:,和隐式解:,2 通解与特解,定义5 如果微分方程的解中含有任意常数,且所含的相互独立的任意常数的个数与微分方程的阶数相同,则称这样的解为该方程的通解.,例如:,n阶微分方程通解的一般形式为,注1:,例3,证明:,由于,故,又由于,注2:,注3:,类似可定

3、义方程的隐式通解,如果微分方程的隐式解中含有任意常数,且所含的相互独立的任意常数的个数与微分方程的阶数相同,则称这样的解为该 方程的隐式通解.,以后不区分显式通解和隐式通解,统称为方程的通解.,在通解中给任意常数以确定的值而得到的解称为方程的特解.,例如,定义6,3 定解条件,为了从通解中得到合乎要求的特解,必须根据实际问题给微分方程附加一定的条件,称为定解条件.,求满足定解条件的求解问题称为定解问题.,常见的定解条件是初始条件,n阶微分方程的初始条件是指如下的n个条件:,当定解条件是初始条件时,相应的定解问题称为初值问题.,注1:n阶微分方程的初始条件有时也可写为,注2:,例4,解,由于,且

4、,解以上方程组得,思考,1、微分方程的解是否连续?是否可导? 2、微分方程解的定义区间是否可以是一个点? 3、通解是否一定包含了全部解? 4、所有方程都有通解吗?,五 积分曲线和方向场,1 积分曲线,一阶微分方程,称为微分方程的积分曲线.,2 方向场,在方向场中,方向相同的点的几何轨迹称为等斜线.,所规定的方向场.,图1.2,等斜线,积分曲线:图中实线,例:讨论微分方程,等斜线是双曲线:,积分曲线的分布概况如左图.,拐点所在的曲线,方向场画法:适当画出若干条等斜线,再在每条等斜线上适当选取若干个点画出对应的向量,这样即可画出这个方向场.,例 画出方程 所确定的方向场示意图.,解,方程的等斜线为

5、,画出五条等斜线,再在每条等斜线上适当选取若干个点画出对应的向量,如图方向场。,根据方向场即可大致描绘出积分曲线经过点(0,1),(0,0),(0,-1)的三条积分曲线如左图所示。,例5,例6,积分曲线,方向场,方向场示意图,积分曲线,例7,六、微分方程组,定义:用两个及两个以上的关系式表示的微分方程称为微分方程组。,Lorenz方程,Volterra两种种群竞争模型,(1.18),(1.19),高阶微分方程 的另一种形式(如果可能!),如果把 都理解为未知函数,并作变换,上述高阶微分方程可以变为下列微分方程组,并可以记为向量形式,其中 均为向量函数,分析:微分方程(组)的向量形式为其用线性代

6、数知识进行研究讨论提供了方便。,七、驻定与非驻定、动力系统,如果方程组 的右端不含自变量 ,即,则称为驻定(自治)的,否则就称为非驻定的(非自治)的。,注:对于非驻定方程组总可以引入变换变为驻定方程组。,把满足恒同性和可加性的映射称为动力系统。动力系统分为连续和离散系统两种类型,对应有连续动力系统和离散动力系统。,注:记 为单参数 的 的映射(变换),则映射满足恒同性和可加性,即:,和,八、相空间、奇点和轨线,把不含自变量、仅由未知函数组成的空间称为相空间; 积分曲线在相空间中的投影称为轨线; 把驻定方程组的解称为微分方程组的平衡解(驻定解、常数解)或奇点(平衡点几何定义);,九、雅可比矩阵与函数相关性,对于 个变元的 个函数定义雅可比矩阵为,当 时,称雅可比矩阵对应的行列式为雅可比行列式,记为,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报