ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:993KB ,
资源ID:10202991      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10202991.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(运筹学课件第4章 整数规划与分配问题.ppt)为本站会员(gnk289057)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

运筹学课件第4章 整数规划与分配问题.ppt

1、第4章 整数规划与分配问题,重庆三峡学院 关文忠 http:/ 通过本章学习,了解求解整数规划“分枝定界法”的其中思路,掌握0-1变量在数学建模中的应用;熟练掌握“匈牙利法”,至少掌握一种软件求得整数规划及分配问题的最优解。 【知识结构】,管理运筹学课件,2019年10月19日星期六,本章主要内容,4.1 整数规划 4.1.1 整数规划的概念 4.1.2 分枝定界法的基本思路* 4.2 0-1规划 4.2.1 0-1规划的概念 4.2.2 0-1规划的隐枚举法简介* 4.2.4 0-1变量在数学建模中的用途 案例4-1 球队队员筛选 案例4-2 选址问题 案例4-3 集合覆盖问题 4.3 分配

2、问题 4.3.1 分配问题数学模型 4.3.2 分配问题的解题方法匈牙利法 案例4-4 任务分派 本章小结,管理运筹学课件,2019年10月19日星期六,导入案例集装箱托运计划,某厂拟用集装箱托运甲、乙两种货物,每箱的体积、质量、可获得的利润以及托运所受到的限制如表4-1所示。问怎样安排托运计划,可使利润最大?,设 x1,x2表示两种货物装载数量(整数),依题意有如下数学模型:,在实际中,许多要求变量取整的数学模型,称为整数规划。本章将讨论整数规划求解的基本思路、0-1变量的用法、分配问题及匈牙利法,以及利用Excel, Lingo, WinQSB求解的演示。,管理运筹学课件,2019年10月

3、19日星期六,4.1.1 整数规划的基本概念,整数规划(integer programming,IP)是指一类要求问题中的全部或一部分变量为整数的数学规划。 在整数规划中,依决策变量的取值不同,又可进一步划分: 如果所有变量都限制为整数,则称为纯整数规划(Pure Integer Programming,PIP); 如果仅一部分变量限制为整数,则称为混合整数规划(Mixed Integer Programming,MIP); 变量取二进制的整数规划则称为0-1规划(Binary Integer Programming,BIP)。,管理运筹学课件,2019年10月19日星期六,4.1.2 分枝定

4、界法的基本思路*,【例4.1】 用图解法求解整数规划,分枝定界法(Branch and Bound Method)用于求解整数规划问题,是在20世纪60年代初,由Land Doig和Dakin等人提出的。,解 (1) 绘制直角坐标系,图示约束条件,图示目标函数一根基线(z=30),使其平行移动,求得非整数最优解。该解的坐标为(72/23,88/23),不在网格线的交叉点上,非整数解(非可行解)。,(2) 对“解1”分枝定界:选取x1 进行分枝定界:在原模型的基础上,分别添加x13,x14 。优化结果 “解2” ,X=(3,31/8),z=38.25;“解3”,X=(4,8/3),z=36,均为

5、非整数(非可行解)。,(3) 先对“解2”分枝定界:“解2”的坐标为(3,31/8),分别添加 x23,x24,优化结果 “解4”,X=(3,3),z=33,为可行解;“解5”,X=(8/3,4),z=37.33,为非可行解。,(4) 再对“解3”分枝定界:“解3”的坐标 , 为非整数,添加x22 (x2 3为非可行域),优化结果为X=(9/2,2),z=34.5;再添加x1 =4,x1 5 。解得整数解X=(4,2),z=32和非整数解X=(21/4,1),目标值z=31.25;整数解目标值大于非整数解,取(4,2),得“解6”。,(2,9/2),z=34.5,解3 (4,8/3),解1 (

6、72/23,88/23),解2 (3,31/8),5x1+6x2=30,解4 (3,3),z=33,解5 (8/3,4),z=37.33,解6 (4,2),z=32,(5) 对“解5”分枝定界:“解5”的坐标(8/3,4), 为非整数,添加x12 ( x13为非可行域),优化结果为X=(2,17/4),再添加x2=4 和x2=5 。求得整数解(2,4),目标值34;整数解(0,5),目标值30,取(2,4)。如图“解7”。,解7 (2,4),z=34,(6) 剪枝:上述有三个区域的整数解分别为“解4”X=(3,3),z=33;“解6”X=(4,2),z=32;“解7”X=(2,4),z=34。

7、相比较,目标值最大的为34,对应的最优方案 。 演示:利用WinQSB,ExcelORM+规划求解,ExcelORM+Lingo求例4.1,管理运筹学课件,2019年10月19日星期六,4.2.1 0-1规划的概念,0-1规划是一种特殊类型的整数规划,即决策变量只取0或1。0-1规划在整数规划中占有重要地位,许多实际问题,例如指派问题、选址问题、送货问题都可归结为此类规划。求解0-1规划的常用方法是隐枚举法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。 0-1规划的数学模型为:,管理运筹学课件,2019年10月19日星期六,4.2.2 隐枚举法简介,1.化成标准形式

8、 (1)目标函数:min ,cj0 (2)目标若max,目标系数改变符号,变为min; (2)若cj0,令yj=1-xj使其变正; (3)目标函数中,变量按目标系数从小到大排列,约束条件中也跟着相应改变. 2.令标准化后的0-1问题所有变量为0,若满足约束,即为最优,否则转下步. 3.按目标函数中排列顺序依次令各变量分别取1或0,进行枚举.,管理运筹学课件,2019年10月19日星期六,4.2.4 0-1变量在数学建模中的应用,管理运筹学课件,2019年10月19日星期六,案例4-1 球队队员筛选,某校篮球队准备从以下6名预备队员中选拔3名为正式队员,并使平均的身高尽可能高。这六名预备队员情况

9、如表所示。 队员的挑选要满足下列条件: (1) 6位预备队员选3名。 (2) 至少补充1名后卫人员。 (3) B或E中间最多入选1名。 (4) 最多补充1名中锋。 (5) 无论B或D入选,F都不能入选。,管理运筹学课件,2019年10月19日星期六,案例4-2 选址问题,某公司在城市东、西、南三区拟建立门市部。计划有7个位置(点) Aj(j=1,7)可供选择。规定: 在东区,由A1,A2,A3 三个点至多选两个;在西区,由 A4,A5 两个点至少选一个;在南区,由A6,A7 两个点至少选一个。设各位置建点的成本与预计利润见表,若建点总成本控制在100万元以内,试问应该选取哪几个点可使年利润为最

10、大?。,数学模型为:,管理运筹学课件,2019年10月19日星期六,案例4-3 集合覆盖问题,某区有6个街道。这个区必须确定在什么地方修建消防站。在保证至少有一个消防站在每个街道的15min行驶时间内的情况下,这个区希望修建的消防站最少。各街道间行驶时间如表,管理运筹学课件,2019年10月19日星期六,4.3.1 分配问题数学模型,在管理活动中,人们会经常遇到这样的问题,某单位有n(n1) 项工作任务,需要 m(n1)个人去完成,并且每个人只干一件工作,每项工作都必须有人干,通过权衡,合理分派任务,使总的消耗(或收益)达到最小(或最大)的0-1规划问题,称为分配问题(Assignment P

11、roblem,AP),导入案例运动项目分配问题 某游泳队有四名运动员,其平时训练成绩(s/50m)如表所示。问如何安排可使总成绩最好?,管理运筹学课件,2019年10月19日星期六,4.3.1 分配问题数学模型,管理运筹学课件,2019年10月19日星期六,4.3.2 匈牙利法,管理运筹学课件,2019年10月19日星期六,4.3.2 匈牙利法,【例4.7】 用匈牙利法求引例中的最小化分配问题。,管理运筹学课件,2019年10月19日星期六,4.3.2 匈牙利法,【例4.8】 用匈牙利法求引例中的最小化分配问题。,k=2,管理运筹学课件,2019年10月19日星期六,案例4-4 任务分派,管理运筹学课件,2019年10月19日星期六,案例4-4 任务分派,(2)其中有一个人完成两项,其他每人完成一项;,(3)任务A由甲或丙完成,任务C由丙或丁完成,任务E由甲、乙或丁完成,且规定4人中丙或丁完成两项任务,其他每人完成一项。,(1)任务E必须完成,其他4项中可任选3项完成;,管理运筹学课件,2019年10月19日星期六,本章小结,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报