,一、反函数的导数,定理,即 反函数的导数等于直接函数导数的倒数.,证,于是有,例1,解,同理可得,例2,解,特别地,二、复合函数的求导法则,定理,即 因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导.(链式法则),证,推广,例3,解,例4,解,例5,解,例6,解,例7,解,三、小结,反函数的求导法则(注意成立条件);,复合函数的求导法则 (注意函数的复合过程,合理分解正确使用链导法);,已能求导的函数:可分解成基本初等函数,或常数与基本初等函数的和、差、积、商.,思考题,思考题解答,正确地选择是(3),例,在 处不可导,,取,在 处可导,,在 处不可导,,取,在 处可导,,在 处可导,,练 习 题,练习题答案,