ImageVerifierCode 换一换
格式:PDF , 页数:97 ,大小:3.11MB ,
资源ID:10080099      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10080099.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数据结构与算法分析C++描述第三版》课后答案.pdf)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数据结构与算法分析C++描述第三版》课后答案.pdf

1、Publisher Greg TobinSenior Acquisitions Editor Michael HirschEditorial Assistant Lindsey TriebelMarketing Manager Michelle BrownMarketing Assistant Dana LopreatoDigital Asset Manager Marianne GrothComposition Windfall Software, using ZzTEXProofreaders Melanie Aswell, Debbie SidmanAccess the latest i

2、nformation about Addison-Wesley titles from our World Wide Web site: http:/www.aw- of the designations used by manufacturers and sellers to distinguish their products are claimed astrademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademarkclaim, the designa

3、tions have been printed in initial caps or all caps.Copyright 2006 by Pearson Education, Inc.For information on obtaining permission for use of material in this work, please submit a written requestto Pearson Education, Inc., Rights and Contract Department, 75 Arlington Street, Suite 300, Boston, MA

4、02116 or fax your request to (617) 848-7047.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, ortransmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or any othermedia embodiments now known or hereafter to become kn

5、own, without the prior written permission ofthe publisher. Printed in the United States of America.12345678910PDF08 07 06 05CONTENTSPreface vChapter 1 Introduction 1Chapter 2 Algorithm Analysis 5Chapter 3 Lists, Stacks, and Queues 9Chapter 4 Trees 29Chapter 5 Hashing 41Chapter 6 Priority Queues (Hea

6、ps) 45Chapter 7 Sorting 53Chapter 8 The Disjoint Set 59Chapter 9 Graph Algorithms 63Chapter 10 Algorithm Design Techniques 77Chapter 11 Amortized Analysis 87Chapter 12 Advanced Data Structures and Implementation 91iiiPREFACEIncluded in this manual are answers to many of the exercises in the textbook

7、 Data Structures andAlgorithm Analysis in C+, third edition, published by Addison-Wesley. These answers reflect thestate of the book in the first printing of the third edition.Specifically omitted are general programming questions and any question whose solution ispointed to by a reference at the en

8、d of the chapter. Solutions vary in degree of completeness; generally,minor details are left to the reader. For clarity, the few code segments that are present are meant tobe pseudo-C+ rather than completely perfect code.Errors can be reported to weissfiu.edu.vCHAPTER 1Introduction1.4 The general wa

9、y to do this is to write a procedure with headingvoid processFile( String fileName );which opens fileName, does whatever processing is needed, and then closes it. If a line of the form#include SomeFileis detected, then the callprocessFile( SomeFile );is made recursively. Self-referential includes ca

10、n be detected by keeping a list of files for which a callto processFile has not yet terminated, and checking this list before making a new call to processFile.1.5 int ones( int n )if(n v(3);v0.setValue(“George Bush“, 400000.00);v1.setValue(“Bill Gates“, 2000000000.00);v2.setValue(“Dr. Phil“, 1300000

11、0.00);cout1, the number of multiplies used isfloorleftlog Nfloorright+b(N) 12.25 (a) A.(b) B.(c) The information given is not sufficient to determine an answer. We have only worst-case bounds.(d) Yes.2.26 (a) Recursion is unnecessary if there are two or fewer elements.(b) One way to do this is to no

12、te that if the first N 1elements have a majority, then the last elementcannot change this. Otherwise, the last element could be a majority. Thus if N is odd, ignore the lastelement. Run the algorithm as before. If no majority element emerges, then return the Nthelementas a candidate.(c) The running

13、time is O(N), and satisfies T(N)= T(N/2) + O(N).(d) One copy of the original needs to be saved. After this, the B array, and indeed the recursion canbe avoided by placing each Biin the A array. The difference is that the original recursive strategyimplies that O(log N) arrays are used; this guarante

14、es only two copies.2.27 Start from the top-right corner. With a comparison, either a match is found, we go left, or we godown. Therefore, the number of comparisons is linear.2.28 (a,c) Find the two largest numbers in the array.(b,d) Similar solutions; (b) is described here. The maximum difference is

15、 at least zero (i j), sothat can be the initial value of the answer to beat. At any point in the algorithm, we have the currentvalue j, and the current low point i.Ifaj ai is larger than the current best, update the best8 Chapter 2 Algorithm Analysisdifference. If aj is less than ai, reset the curre

16、nt low point to i. Start with i at index 0, j at index0. j just scans the array, so the running time is O(N).2.29 Otherwise, we could perform operations in parallel by cleverly encoding several integers into one.For instance, if A = 001, B = 101, C = 111, D = 100, we could add A and B at the same ti

17、me as Cand D by adding 00A00C + 00B00D. We could extend this to add N pairs of numbers at once inunit cost.2.31 No. If low = 1, high = 2, then mid = 1, and the recursive call does not make progress.2.33 No. As in Exercise 2.31, no progress is made.2.34 See my textbook Algorithms, Data Structures and

18、 Problem Solving with C+ for an explanation.CHAPTER 3Lists, Stacks,and Queues3.1 template void printLots(list L, list P)typename list :const_iterator pIter ;typename list :const_iterator lIter ;int start = 0;lIter = L.begin();for (pIter=P.begin(); pIter != P.end() pIter+)while (start next;afterp = p

19、-next; / both p and afterp assumed not NULLp-next = afterp- next;beforep -next = afterp;afterp-next = p;910 Chapter 3 Lists, Stacks, and Queues(b) Here is the code for doubly linked lists:/ p and afterp are cells to be switched. Error checks as beforeNode *beforep, *afterp;beforep = p-prev;afterp =

20、p-next;p-next = afterp-next;beforep-next = afterp;afterp-next = p;p-next-prev = p;p-prev = afterp;afterp-prev = beforep;3.3 template Iterator find(Iterator start, Iterator end, const Objectwhile ( iter != end return iter;3.4 / Assumes both input lists are sortedtemplate list intersection( const list

21、 typename list: const_iterator iterL1 = L1.begin();typename list: const_iterator iterL2= L2.begin();while(iterL1 != L1.end() iterL1+;iterL2+;else if (*iterL1 list listUnion( const list typename list: const_iterator iterL1 = L1.begin();typename list: const_iterator iterL2= L2.begin();while(iterL1 !=

22、L1.end() iterL1+;iterL2+;else if (*iterL1 N/2, the potato shouldbe passed in the reverse direction. This requires a doubly linked list. The worst case running timeis clearly O(N min(M, N), although when the heuristics are used, and M and N are comparable,the algorithm might be significantly faster.

23、If M = 1, the algorithm is clearly linear.#include #include using namespace std;int main()int i,j, n, m, mPrime, numLeft;list L;list:iterator iter;/Initializationcoutnm;numLeft = n;12 Chapter 3 Lists, Stacks, and QueuesmPrime=m%n;for(I=1;I=0 Object return *current;const_iterator( const Vector friend

24、 class Vector;(b) class iterator : public const_iteratorpublic:/iterator( )/ Force use of the safe constructorObject const Object iterator ;(c) iterator begin( ) return iterator(*this , const_iterator begin( ) const return const_iterator(*this, iterator end( ) return iterator(*this, const_iterator e

25、nd( ) const return const_iterator(*this, 3.11 template struct NodeObject data;Node * next;Node ( const Objecttemplate class singleListpublic:singleList( ) init(); singleList()eraseList(head);singleList( const singleList init();*this = rhs;16 Chapter 3 Lists, Stacks, and Queuesbool add(Object x)if (c

26、ontains(x)return false;elseNode *ptr = new Node(x);ptr-next = head-next;head-next = ptr;theSize+;return true;bool remove(Object x)if (!contains(x)return false;elseNode*ptr = head-next;Node*trailer;while(ptr-data != x) trailer = ptr;ptr=ptr-next;trailer-next = ptr-next;delete ptr;theSize-;return true

27、;int size() return theSize;void print()Node *ptr = head-next;while (ptr != NULL)coutdatanext;cout * ptr = head-next;while (ptr != NULL)if (x = ptr-data)return true;elseptr = ptr- next;return false;void init()theSize = 0;head = new Node;head- next = NULL;void eraseList(Node * h)Node *ptr= h;Node *nex

28、tPtr;while(ptr != NULL)nextPtr = ptr-next;delete ptr;ptr= nextPtr;private:Node *head;int theSize;3.12 template struct NodeObject data;Node * next;Node ( const Object18 Chapter 3 Lists, Stacks, and Queuestemplate class singleListpublic:singleList( ) init(); singleList()eraseList(head);singleList( con

29、st singleList init();*this = rhs;bool add(Object x)if (contains(x)return false;elseNode *ptr = head-next;Node* trailer = head;while(ptr trailer-next = new Node (x);trailer-next-next = ptr;theSize+;return true;bool remove(Object x)if (!contains(x)return false;elseNode*ptr = head-next;Node*trailer;whi

30、le(ptr-data != x) trailer = ptr;Solutions 19ptr=ptr-next;trailer-next = ptr-next;delete ptr;theSize-;return true;int size() return theSize;void print()Node *ptr = head-next;while (ptr != NULL)coutdatanext;cout * ptr = head-next;while (ptr != NULL elseptr = ptr- next;return false;void init()theSize =

31、 0;head = new Node;head- next = NULL;void eraseList(Node * h)Node *ptr= h;Node *nextPtr;while(ptr != NULL)20 Chapter 3 Lists, Stacks, and QueuesnextPtr = ptr-next;delete ptr;ptr= nextPtr;private:Node *head;int theSize;3.13 Add the following code to the const_iterator class. Add the same code with it

32、erator replacingconst_iterator to the iterator class.const_iterator return *this;const_iterator operator- ( int )const_iterator old = *this;-( *this );return old;3.14 const_iterator for(inti=0;inext;return advanced;3.15 void splice (iterator itr, List if (itr.theList != this)throw IteratorMismatchEx

33、ception ();Node *p = iter.current;theSize += lst.size();p-prev-next = lst.head-next;lst.head-next-prev = p-prev;lst.tail-prev-next = p;p-prev = lst-tail-prev;lst.init();Solutions 213.16 The class const_reverse_iterator is almost identical to const_iterator while reverse_iterator isalmost identical t

34、o iterator. Redefine + to be and vice versa for both the pre and post operatorsfor both classes as well as changing all variables of type const_iterator to const_reverse_iteratorand changing iterator to reverse_iterator. Add two new members in list for rbegin() and rend()./ In List addconst_reverse_

35、iterator rbegin() constreturn const_reverse_iterator itr( tail);const_reverse_iterator rend() constconst_reverse_iterator itr(head);reverse_iterator rbegin()return reverse_iterator itr( tail);reverse_iterator rend()reverse_iterator itr(head);3.18 Add a boolean data member to the node class that is t

36、rue if the node is active; and false if it is “stale.”The erase method changes this data member to false; iterator methods verify that the node is notstale.3.19 Without head or tail nodes the operations of inserting and deleting from the end becomes a O(N)operation where the N is the number of eleme

37、nts in the list. The algorithm must walk down thelist before inserting at the end. With the head node insert needs a special case to account for whensomething is inserted before the first node.3.20 (a) The advantages are that it is simpler to code, and there is a possible saving if deleted keys ares

38、ubsequently reinserted (in the same place). The disadvantage is that it uses more space, becauseeach cell needs an extra bit (which is typically a byte), and unused cells are not freed.3.22 The following function evaluates a postfix expression, using +, , , / and ending in =. It requiresspaces betwe

39、en all operators and = and uses the stack, string and math.h libraries. It only recognizes0 in input as 0.0.double evalPostFix( )stack s;string token;double a, b, result;cin token;while (token0 != =)result = atof (token.c_str();if (result != 0.0 )s.push(result);22 Chapter 3 Lists, Stacks, and Queues

40、else if (token = “0.0“)s.push(result);elseswitch (token0)case +:a=s.top(); s.pop(); b = s.top();s.pop(); s.push(a+b); break;case -:a=s.top(); s.pop(); b = s.top();s.pop(); s.push(a-b); break;case *:a=s.top(); s.pop(); b = s.top();s.pop(); s.push(a*b); break;case /:a=s.top(); s.pop(); b = s.top();s.p

41、op(); s.push(a/b); break;case :a=s.top(); s.pop(); b = s.top();s.pop(); s.push(exp(a*log(b); break;cin token;return s.top();3.23 (a, b) This function will read in from standard input an infix expression of single lower casecharacters and the operators, +, , / , , and (, ), and output a postfix expre

42、ssion.void inToPostfix()stack s;char token;cin token;while (token != =)if (token = a while (!s.empty()cout s;string token;string a, b;cintoken;while (token0 != =)if (token0 = a return s.top(); /Converts postfix to infix3.24 Two stacks can be implemented in an y array by having one grow from the low

43、end of the array up,and the other from the high end down.3.25 (a) Let E be our extended stack. We will implement E with two stacks. One stack, which well callS, is used to keep track of the push and pop operations, and the other M, keeps track of the minimum.To implement E.push (x), we perform S.pus

44、h (x).Ifx is smaller than or equal to the top element instack M, then we also perform M.push (x). To implement E.pop( ) we perform S.pop().Ifx is equalto the top element in stack M, then we also M.pop().E.findMin( ) is performed by examining thetop of M. All these operations are clearly O (1).24 Cha

45、pter 3 Lists, Stacks, and Queues(b) This result follows from a theorem in Chapter 7 that shows that sorting must take Omega1(N log N)time. O (N) operations in the repertoire, including deleteMin, would be sufficient to sort.3.26 Three stacks can be implemented by having one grow from the bottom up,

46、another from the topdown and a third somewhere in the middle growing in some (arbitrary) direction. If the third stackcollides with either of the other two, it needs to be moved. A reasonable strategy is to move it so thatits center (at the time of the move) is halfway between the tops of the other

47、two stacks.3.27 Stack space will not run out because only 49 calls will be stacked. However the running time isexponential, as shown in Chapter 2, and thus the routine will not terminate in a reasonable amountof time.3.28 This requires a doubly linked list with pointers to the head and the tail In f

48、act it can be implementedwith a list by just renaming the list operations.template class dequepublic:deque() l();void push (Object obj) l.push_front(obj);Object pop (); Object obj=l.front(); l.pop_front(); return obj;void inject(Object obj); l.push_back(obj);Object eject(); pop_back(obj);private:lis

49、t l; /3.29 Reversal of a singly linked list can be done recursively using a stack, but this requires O (N) extraspace. The following solution is similar to strategies employed in garbage collection algorithms (firstrepresents the first node in the non-empty node in the non-empty list). At the top of the while loopthe list fro

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报